Abstract:Indoor imaging is a critical task for robotics and internet-of-things. WiFi as an omnipresent signal is a promising candidate for carrying out passive imaging and synchronizing the up-to-date information to all connected devices. This is the first research work to consider WiFi indoor imaging as a multi-modal image generation task that converts the measured WiFi power into a high-resolution indoor image. Our proposed WiFi-GEN network achieves a shape reconstruction accuracy that is 275% of that achieved by physical model-based inversion methods. Additionally, the Frechet Inception Distance score has been significantly reduced by 82%. To examine the effectiveness of models for this task, the first large-scale dataset is released containing 80,000 pairs of WiFi signal and imaging target. Our model absorbs challenges for the model-based methods including the non-linearity, ill-posedness and non-certainty into massive parameters of our generative AI network. The network is also designed to best fit measured WiFi signals and the desired imaging output. For reproducibility, we will release the data and code upon acceptance.
Abstract:Radio Tomographic Imaging (RTI) is a phaseless imaging approach that can provide shape reconstruction and localization of objects using received signal strength (RSS) measurements. RSS measurements can be straightforwardly obtained from wireless networks such as Wi-Fi and therefore RTI has been extensively researched and accepted as a good indoor RF imaging technique. However, RTI is formulated on empirical models using an assumption of light-of-sight (LOS) propagation that does not account for intricate scattering effects. There are two main objectives of this work. The first objective is to reconcile and compare the empirical RTI model with formal inverse scattering approaches to better understand why RTI is an effective RF imaging technique. The second objective is to obtain straightforward enhancements to RTI, based on inverse scattering, to enhance its performance. The resulting enhancements can provide reconstructions of the shape and also material properties of the objects that can aid image classification. We also provide numerical and experimental results to compare RTI with the enhanced RTI for indoor imaging applications using low-cost 2.4 GHz Wi-Fi transceivers. These results show that the enhanced RTI can outperform RTI while having similar computational complexity to RTI.
Abstract:Inverse scattering problems, such as those in electromagnetic imaging using phaseless data (PD-ISPs), involve imaging objects using phaseless measurements of wave scattering. Such inverse problems can be highly non-linear and ill-posed under extremely strong scattering conditions such as when the objects have very high permittivity or are large in size. In this work, we propose an end-to-end reconstruction framework using unrolled optimization with deep priors to solve PD-ISPs under very strong scattering conditions. We incorporate an approximate linear physics-based model into our optimization framework along with a deep learning-based prior and solve the resulting problem using an iterative algorithm which is unfolded into a deep network. This network not only learns data-driven regularization, but also overcomes the shortcomings of approximate linear models and learns non-linear features. More important, unlike existing PD-ISP methods, the proposed framework learns optimum values of all tunable parameters (including multiple regularization parameters) as a part of the framework. Results from simulations and experiments are shown for the use case of indoor imaging using 2.4 GHz phaseless Wi-Fi measurements, where the objects exhibit extremely strong scattering and low-absorption. Results show that the proposed framework outperforms existing model-driven and data-driven techniques by a significant margin and provides up to 20 times higher validity range.
Abstract:We propose a correction to the conventional Rytov approximation (RA) and investigate its performance for predicting wave scattering under strong scattering conditions. An important motivation for the correction and investigation is to help in the development of better models for inverse scattering. The correction is based upon incorporating the high frequency theory of inhomogeneous wave propagation for lossy media into the RA formulation. We denote the technique as the extended Rytov approximation for lossy media (xRA-LM). xRA-LM significantly improves upon existing non-iterative linear scattering approximations such as RA and the Born approximation (BA) by providing a validity range for the permittivity of the objects of up to 50 times greater than RA. We demonstrate the technique by providing results for predicting wave scattering from piece-wise homogeneous scatterers in a two-dimensional (2D) region. Numerical investigation of the performance of xRA-LM for solving direct problem show that xRA-LM can accurately predict wave scattering by electrically large, low-loss scatterers with high complex permittivity ($\epsilon_r> 50+5j$). To the best of our knowledge, this is the first non-iterative, linear approximate wave scattering model which has a large validity range in terms of both permittivity and electrical size.
Abstract:A physics assisted deep learning framework to perform accurate indoor imaging using phaseless Wi-Fi measurements is proposed. It is able to image objects that are large (compared to wavelength) and have high permittivity values, that existing radio frequency (RF) inverse scattering techniques find very challenging, making it suitable for indoor RF imaging. The technique utilizes a Rytov based inverse scattering model with a deep learning framework. The inverse scattering model is based on an extended Rytov approximation (xRA) that pre-reconstructs the RF measurements. Under strong scattering conditions, this pre-reconstruction is related to the actual permittivity profile by a non-linear function, which is learned by a modified U-Net model to obtain the permittivity profile of the object. Thus, our proposed approach not only reconstructs the shape of objects, but also estimates their permittivity values accurately. We demonstrate its imaging performance using simulations as well as experimental results in an actual indoor environment using 2.4 GHz Wi-Fi phaseless measurements. For incident wavelength $\lambda_0$, the proposed framework can reconstruct objects with relative permittivity as high as 77 and electrical size as large as $40 \lambda$, where $\lambda =\lambda_0/\sqrt{77}$. This is in contrast to existing phaseless imaging techniques which cannot reconstruct permittivity values beyond 3 or 4. Thus, our proposed method is the first inverse scattering-based deep learning framework which can image large scatterers with high permittivity and achieve accurate indoor RF imaging using phaseless Wi-Fi measurements.
Abstract:Imaging objects with high relative permittivity and large electrical size remains a challenging problem in the field of inverse scattering. In this work we present a phaseless inverse scattering method that can accurately image and reconstruct objects even with these attributes. The reconstruction accuracy obtained under these conditions has not been achieved previously and can therefore open up the area to technologically important applications such as indoor Radio Frequency (RF) and microwave imaging. The novelty of the approach is that it utilizes a high frequency approximation for waves passing through lossy media to provide corrections to the conventional Rytov approximation (RA). We refer to this technique as the Extended Phaseless Rytov Approximation for Low Loss Media (xPRA-LM). Simulation as well as experimental results are provided for indoor RF imaging using phaseless measurements from 2.4 GHz based WiFi nodes. We demonstrate that the approach provides accurate reconstruction of an object up to relative permittivities of $15+j1.5$ for object sizes greater than $20 \lambda$ ($\lambda$ is wavelength inside object). Even at higher relative permittivities of up to $\epsilon_r=77+j 7$, object shape reconstruction remains accurate, however the reconstruction amplitude is less accurate. These results have not been obtained before and can be utilized to achieve the potential of RF and microwave imaging in applications such as indoor RF imaging.
Abstract:One of the major challenges in multivariate analysis is the estimation of population covariance matrix from sample covariance matrix (SCM). Most recent covariance matrix estimators use either shrinkage transformations or asymptotic results from Random Matrix Theory (RMT). Shrinkage techniques help in pulling extreme correlation values towards certain target values whereas tools from RMT help in removing noisy eigenvalues of SCM. Both of these techniques use different approaches to achieve a similar goal which is to remove noisy correlations and add structure to SCM to overcome the bias-variance trade-off. In this paper, we first critically evaluate the pros and cons of these two techniques and then propose an improved estimator which exploits the advantages of both by taking an optimally weighted convex combination of covariance matrices estimated by an improved shrinkage transformation and a RMT based filter. It is a generalized estimator which can adapt to changing sampling noise conditions in various datasets by performing hyperparameter optimization. We show the effectiveness of this estimator on the problem of designing a financial portfolio with minimum risk. We have chosen this problem because the complex properties of stock market data provide extreme conditions to test the robustness of a covariance estimator. Using data from four of the world's largest stock exchanges, we show that our proposed estimator outperforms existing estimators in minimizing the out-of-sample risk of the portfolio and hence predicts population statistics more precisely. Since covariance analysis is a crucial statistical tool, this estimator can be used in a wide range of machine learning, signal processing and high dimensional pattern recognition applications.
Abstract:One of the biggest reasons for road accidents is curvy lanes and blind turns. Even one of the biggest hurdles for new autonomous vehicles is to detect curvy lanes, multiple lanes and lanes with a lot of discontinuity and noise. This paper presents very efficient and advanced algorithm for detecting curves having desired slopes (especially for detecting curvy lanes in real time) and detection of curves (lanes) with a lot of noise, discontinuity and disturbances. Overall aim is to develop robust method for this task which is applicable even in adverse conditions. Even in some of most famous and useful libraries like OpenCV and Matlab, there is no function available for detecting curves having desired slopes , shapes, discontinuities. Only few predefined shapes like circle, ellipse, etc, can be detected using presently available functions. Proposed algorithm can not only detect curves with discontinuity, noise, desired slope but also it can perform shadow and illumination correction and detect/ differentiate between different curves.