Abstract:In this paper we consider contamination by code generation test sets, in particular in their use in modern large language models. We discuss three possible sources of such contamination and show findings supporting each of them: (i) direct data leakage, (ii) indirect data leakage through the use of synthetic data and (iii) overfitting to evaluation sets during model selection. Key to our findings is a new dataset of 161 prompts with their associated python solutions, dataset which is released at https://huggingface.co/datasets/CohereForAI/lbpp .
Abstract:Documents are a core part of many businesses in many fields such as law, finance, and technology among others. Automatic understanding of documents such as invoices, contracts, and resumes is lucrative, opening up many new avenues of business. The fields of natural language processing and computer vision have seen tremendous progress through the development of deep learning such that these methods have started to become infused in contemporary document understanding systems. In this survey paper, we review different techniques for document understanding for documents written in English and consolidate methodologies present in literature to act as a jumping-off point for researchers exploring this area.
Abstract:Large, self-supervised transformer-based language representation models have recently received significant amounts of attention, and have produced state-of-the-art results across a variety of tasks simply by scaling up pre-training on larger and larger corpora. Such models usually produce high dimensional vectors, on top of which additional task-specific layers and architectural modifications are added to adapt them to specific downstream tasks. Though there exists ample evidence that such models work well, we aim to understand what happens when they work well. We analyze the redundancy and location of information contained in output vectors for one such language representation model -- BERT. We show empirical evidence that the [CLS] embedding in BERT contains highly redundant information, and can be compressed with minimal loss of accuracy, especially for finetuned models, dovetailing into open threads in the field about the role of over-parameterization in learning. We also shed light on the existence of specific output dimensions which alone give very competitive results when compared to using all dimensions of output vectors.