Abstract:This study investigates the subjective experiences of users in two robotic object delivery methods: direct handover and table placement, when users are occupied with another task. A user study involving 15 participants engaged in a typing game revealed that table placement significantly enhances user experience compared to direct handovers, particularly in terms of satisfaction, perceived safety and intuitiveness. Additionally, handovers negatively impacted typing performance, while all participants expressed a clear preference for table placement as the delivery method. These findings highlight the advantages of table placement in scenarios requiring minimal user disruption.
Abstract:Robots are increasingly working alongside people, delivering food to patrons in restaurants or helping workers on assembly lines. These scenarios often involve object handovers between the person and the robot. To achieve safe and efficient human-robot collaboration (HRC), it is important to incorporate human context in a robot's handover strategies. Therefore, in this work, we develop a collaborative handover model trained on human teleoperation data collected in a naturalistic crafting task. To evaluate the performance of this model, we conduct cross-validation experiments on the training dataset as well as a user study in the same HRC crafting task. The handover episodes and user perceptions of the autonomous handover policy were compared with those of the human teleoperated handovers. While the cross-validation experiment and user study indicate that the autonomous policy successfully achieved collaborative handovers, the comparison with human teleoperation revealed avenues for further improvements.
Abstract:We present Supermarket-6DoF, a real-world dataset of 1500 grasp attempts across 20 supermarket objects with publicly available 3D models. Unlike most existing grasping datasets that rely on analytical metrics or simulation for grasp labeling, our dataset provides ground-truth outcomes from physical robot executions. Among the few real-world grasping datasets, wile more modest in size, Supermarket-6DoF uniquely features full 6-DoF grasp poses annotated with both initial grasp success and post-grasp stability under external perturbation. We demonstrate the dataset's utility by analyzing three grasp pose representations for grasp success prediction from point clouds. Our results show that representing the gripper geometry explicitly as a point cloud achieves higher prediction accuracy compared to conventional quaternion-based grasp pose encoding.
Abstract:This study evaluates the performance and usability of Mixed Reality (MR), Virtual Reality (VR), and camera stream interfaces for remote error resolution tasks, such as correcting warehouse packaging errors. Specifically, we consider a scenario where a robotic arm halts after detecting an error, requiring a remote operator to intervene and resolve it via pick-and-place actions. Twenty-one participants performed simulated pick-and-place tasks using each interface. A linear mixed model (LMM) analysis of task resolution time, usability scores (SUS), and mental workload scores (NASA-TLX) showed that the MR interface outperformed both VR and camera interfaces. MR enabled significantly faster task completion, was rated higher in usability, and was perceived to be less cognitively demanding. Notably, the MR interface, which projected a virtual robot onto a physical table, provided superior spatial understanding and physical reference cues. Post-study surveys further confirmed participants' preference for MR over other interfaces.
Abstract:We propose a novel hand-object contact detection system based on grasp quality metrics extracted from object and hand poses, and evaluated its performance using the DexYCB dataset. Our evaluation demonstrated the system's high accuracy (approaching 90%). Future work will focus on a real-time implementation using vision-based estimation, and integrating it to a robot-to-human handover system.
Abstract:Differentiable simulators continue to push the state of the art across a range of domains including computational physics, robotics, and machine learning. Their main value is the ability to compute gradients of physical processes, which allows differentiable simulators to be readily integrated into commonly employed gradient-based optimization schemes. To achieve this, a number of design decisions need to be considered representing trade-offs in versatility, computational speed, and accuracy of the gradients obtained. This paper presents an in-depth review of the evolving landscape of differentiable physics simulators. We introduce the foundations and core components of differentiable simulators alongside common design choices. This is followed by a practical guide and overview of open-source differentiable simulators that have been used across past research. Finally, we review and contextualize prominent applications of differentiable simulation. By offering a comprehensive review of the current state-of-the-art in differentiable simulation, this work aims to serve as a resource for researchers and practitioners looking to understand and integrate differentiable physics within their research. We conclude by highlighting current limitations as well as providing insights into future directions for the field.
Abstract:Service robots are increasingly employed in the hospitality industry for delivering food orders in restaurants. However, in current practice the robot often arrives at a fixed location for each table when delivering orders to different patrons in the same dining group, thus requiring a human staff member or the customers themselves to identify and retrieve each order. This study investigates how to improve the robot's service behaviours to facilitate clear intention communication to a group of users, thus achieving accurate delivery and positive user experiences. Specifically, we conduct user studies (N=30) with a Temi service robot as a representative delivery robot currently adopted in restaurants. We investigated two factors in the robot's intent communication, namely visualisation and movement trajectories, and their influence on the objective and subjective interaction outcomes. A robot personalising its movement trajectory and stopping location in addition to displaying a visualisation of the order yields more accurate intent communication and successful order delivery, as well as more positive user perception towards the robot and its service. Our results also showed that individuals in a group have different interaction experiences.
Abstract:We present a multimodal traffic light state detection using vision and sound, from the viewpoint of a quadruped robot navigating in urban settings. This is a challenging problem because of the visual occlusions and noise from robot locomotion. Our method combines features from raw audio with the ratios of red and green pixels within bounding boxes, identified by established vision-based detectors. The fusion method aggregates features across multiple frames in a given timeframe, increasing robustness and adaptability. Results show that our approach effectively addresses the challenge of visual occlusion and surpasses the performance of single-modality solutions when the robot is in motion. This study serves as a proof of concept, highlighting the significant, yet often overlooked, potential of multi-modal perception in robotics.
Abstract:Interest in agricultural robotics has increased considerably in recent years due to benefits such as improvement in productivity and labor reduction. However, current problems associated with unstructured environments make the development of robotic harvesters challenging. Most research in agricultural robotics focuses on single arm manipulation. Here, we propose a dual-arm approach. We present a dual-arm fruit harvesting robot equipped with a RGB-D camera, cutting and collecting tools. We exploit the cooperative task description to maximize the capabilities of the dual-arm robot. We designed a Hierarchical Quadratic Programming based control strategy to fulfill the set of hard constrains related to the robot and environment: robot joint limits, robot self-collisions, robot-fruit and robot-tree collisions. We combine deep learning and standard image processing algorithms to detect and track fruits as well as the tree trunk in the scene. We validate our perception methods on real-world RGB-D images and our control method on simulated experiments.
Abstract:We propose enhancing trajectory optimization methods through the incorporation of two key ideas: variable-grasp pose sampling and trajectory commitment. Our iterative approach samples multiple grasp poses, increasing the likelihood of finding a solution while gradually narrowing the optimization horizon towards the goal region for improved computational efficiency. We conduct experiments comparing our approach with sampling-based planning and fixed-goal optimization. In simulated experiments featuring 4 different task scenes, our approach consistently outperforms baselines by generating lower-cost trajectories and achieving higher success rates in challenging constrained and cluttered environments, at the trade-off of longer computation times. Real-world experiments further validate the superiority of our approach in generating lower-cost trajectories and exhibiting enhanced robustness. While we acknowledge the limitations of our experimental design, our proposed approach holds significant potential for enhancing trajectory optimization methods and offers a promising solution for achieving consistent and reliable robotic manipulation.