Abstract:In this paper, we propose a novel multi-functional reconfigurable intelligent surface (MF-RIS) that supports signal reflection, refraction, amplification, and target sensing simultaneously. Our MF-RIS aims to enhance integrated communication and sensing (ISAC) systems, particularly in multi-user and multi-target scenarios. Equipped with reflection and refraction components (i.e., amplifiers and phase shifters), MF-RIS is able to adjust the amplitude and phase shift of both communication and sensing signals on demand. Additionally, with the assistance of sensing elements, MF-RIS is capable of capturing the echo signals from multiple targets, thereby mitigating the signal attenuation typically associated with multi-hop links. We propose a MF-RIS-enabled multi-user and multi-target ISAC system, and formulate an optimization problem to maximize the signal-to-interference-plus-noise ratio (SINR) of sensing targets. This problem involves jointly optimizing the transmit beamforming and MF-RIS configurations, subject to constraints on the communication rate, total power budget, and MF-RIS coefficients. We decompose the formulated non-convex problem into three sub-problems, and then solve them via an efficient iterative algorithm. Simulation results demonstrate that: 1) The performance of MF-RIS varies under different operating protocols, and energy splitting (ES) exhibits the best performance in the considered MF-RIS-enabled multi-user multi-target ISAC system; 2) Under the same total power budget, the proposed MF-RIS with ES protocol attains 52.2%, 73.5% and 60.86% sensing SINR gains over active RIS, passive RIS, and simultaneously transmitting and reflecting RIS (STAR-RIS), respectively; 3) The number of sensing elements will no longer improve sensing performance after exceeding a certain number.
Abstract:In this article, we propose new network architectures that integrate multi-functional reconfigurable intelligent surfaces (MF-RISs) into 6G networks to enhance both communication and sensing capabilities. Firstly, we elaborate how to leverage MF-RISs for improving communication performance in different communication modes including unicast, mulitcast, and broadcast and for different multi-access schemes. Next, we emphasize synergistic benefits of integrating MF-RISs with wireless sensing, enabling more accurate and efficient target detection in 6G networks. Furthermore, we present two schemes that utilize MF-RISs to enhance the performance of integrated sensing and communication (ISAC). We also study multi-objective optimization to achieve the optimal trade-off between communication and sensing performance. Finally, we present numerical results to show the performance improvements offered by MF-RISs compared to conventional RISs in ISAC. We also outline key research directions for MF-RIS under the ambition of 6G.
Abstract:Although reconfigurable intelligent surfaces (RISs) have demonstrated the potential to boost network capacity and expand coverage by adjusting their electromagnetic properties, existing RIS architectures have certain limitations, such as double-fading attenuation and restricted half-space coverage. In this article, we delve into the progressive development from single to multi-functional RIS (MF-RIS) that enables simultaneous signal amplification, reflection, and refraction. We begin by detailing the hardware design and signal model that distinguish MF-RIS from traditional RISs. Subsequently, we introduce the key technologies underpinning MF-RIS-aided communications, along with the fundamental issues and challenges inherent to its deployment. We then outline the promising applications of MFRIS in the realm of communication, sensing, and computation systems, highlighting its transformative impact on these domains. Lastly, we present simulation results to demonstrate the superiority of MF-RIS in enhancing network performance in terms of spectral efficiency.
Abstract:By flexibly manipulating the radio propagation environment, reconfigurable intelligent surface (RIS) is a promising technique for future wireless communications. However, the single-side coverage and double-fading attenuation faced by conventional RISs largely restrict their applications. To address this issue, we propose a novel concept of multi-functional RIS (MF-RIS), which provides reflection, transmission, and amplification simultaneously for the incident signal. With the aim of enhancing the performance of a non-orthogonal multiple-access (NOMA) downlink multiuser network, we deploy an MF-RIS to maximize the sum rate by jointly optimizing the active beamforming and MF-RIS coefficients. Then, an alternating optimization algorithm is proposed to solve the formulated non-convex problem by exploiting successive convex approximation and penalty-based method. Numerical results show that the proposed MF-RIS outperforms conventional RISs under different settings.