Abstract:This study aims to comprehensively review and empirically evaluate the application of multimodal large language models (MLLMs) and Large Vision Models (VLMs) in object detection for transportation systems. In the first fold, we provide a background about the potential benefits of MLLMs in transportation applications and conduct a comprehensive review of current MLLM technologies in previous studies. We highlight their effectiveness and limitations in object detection within various transportation scenarios. The second fold involves providing an overview of the taxonomy of end-to-end object detection in transportation applications and future directions. Building on this, we proposed empirical analysis for testing MLLMs on three real-world transportation problems that include object detection tasks namely, road safety attributes extraction, safety-critical event detection, and visual reasoning of thermal images. Our findings provide a detailed assessment of MLLM performance, uncovering both strengths and areas for improvement. Finally, we discuss practical limitations and challenges of MLLMs in enhancing object detection in transportation, thereby offering a roadmap for future research and development in this critical area.
Abstract:Multimodal Large Language Models (MLLMs) harness comprehensive knowledge spanning text, images, and audio to adeptly tackle complex problems, including zero-shot in-context learning scenarios. This study explores the ability of MLLMs in visually solving the Traveling Salesman Problem (TSP) and Multiple Traveling Salesman Problem (mTSP) using images that portray point distributions on a two-dimensional plane. We introduce a novel approach employing multiple specialized agents within the MLLM framework, each dedicated to optimizing solutions for these combinatorial challenges. Our experimental investigation includes rigorous evaluations across zero-shot settings and introduces innovative multi-agent zero-shot in-context scenarios. The results demonstrated that both multi-agent models. Multi-Agent 1, which includes the Initializer, Critic, and Scorer agents, and Multi-Agent 2, which comprises only the Initializer and Critic agents; significantly improved solution quality for TSP and mTSP problems. Multi-Agent 1 excelled in environments requiring detailed route refinement and evaluation, providing a robust framework for sophisticated optimizations. In contrast, Multi-Agent 2, focusing on iterative refinements by the Initializer and Critic, proved effective for rapid decision-making scenarios. These experiments yield promising outcomes, showcasing the robust visual reasoning capabilities of MLLMs in addressing diverse combinatorial problems. The findings underscore the potential of MLLMs as powerful tools in computational optimization, offering insights that could inspire further advancements in this promising field. Project link: https://github.com/ahmed-abdulhuy/Solving-TSP-and-mTSP-Combinatorial-Challenges-using-Visual-Reasoning-and-Multi-Agent-Approach-MLLMs-.git
Abstract:Object detection is a critical component of transportation systems, particularly for applications such as autonomous driving, traffic monitoring, and infrastructure maintenance. Traditional object detection methods often struggle with limited data and variability in object appearance. The Oriented Window Learning Vision Transformer (OWL-ViT) offers a novel approach by adapting window orientations to the geometry and existence of objects, making it highly suitable for detecting diverse roadway assets. This study leverages OWL-ViT within a one-shot learning framework to recognize transportation infrastructure components, such as traffic signs, poles, pavement, and cracks. This study presents a novel method for roadway asset detection using OWL-ViT. We conducted a series of experiments to evaluate the performance of the model in terms of detection consistency, semantic flexibility, visual context adaptability, resolution robustness, and impact of non-max suppression. The results demonstrate the high efficiency and reliability of the OWL-ViT across various scenarios, underscoring its potential to enhance the safety and efficiency of intelligent transportation systems.
Abstract:Multimodal Large Language Models (MLLMs) have demonstrated proficiency in processing di-verse modalities, including text, images, and audio. These models leverage extensive pre-existing knowledge, enabling them to address complex problems with minimal to no specific training examples, as evidenced in few-shot and zero-shot in-context learning scenarios. This paper investigates the use of MLLMs' visual capabilities to 'eyeball' solutions for the Traveling Salesman Problem (TSP) by analyzing images of point distributions on a two-dimensional plane. Our experiments aimed to validate the hypothesis that MLLMs can effectively 'eyeball' viable TSP routes. The results from zero-shot, few-shot, self-ensemble, and self-refine zero-shot evaluations show promising outcomes. We anticipate that these findings will inspire further exploration into MLLMs' visual reasoning abilities to tackle other combinatorial problems.