Abstract:Personalized Federated Learning (pFL) holds immense promise for tailoring machine learning models to individual users while preserving data privacy. However, achieving optimal performance in pFL often requires a careful balancing act between memory overhead costs and model accuracy. This paper delves into the trade-offs inherent in pFL, offering valuable insights for selecting the right algorithms for diverse real-world scenarios. We empirically evaluate ten prominent pFL techniques across various datasets and data splits, uncovering significant differences in their performance. Our study reveals interesting insights into how pFL methods that utilize personalized (local) aggregation exhibit the fastest convergence due to their efficiency in communication and computation. Conversely, fine-tuning methods face limitations in handling data heterogeneity and potential adversarial attacks while multi-objective learning methods achieve higher accuracy at the cost of additional training and resource consumption. Our study emphasizes the critical role of communication efficiency in scaling pFL, demonstrating how it can significantly affect resource usage in real-world deployments.
Abstract:Collaborations among various entities, such as companies, research labs, AI agents, and edge devices, have become increasingly crucial for achieving machine learning tasks that cannot be accomplished by a single entity alone. This is likely due to factors such as security constraints, privacy concerns, and limitations in computation resources. As a result, collaborative learning (CL) research has been gaining momentum. However, a significant challenge in practical applications of CL is how to effectively incentivize multiple entities to collaborate before any collaboration occurs. In this study, we propose ICL, a general framework for incentivized collaborative learning, and provide insights into the critical issue of when and why incentives can improve collaboration performance. Furthermore, we show the broad applicability of ICL to specific cases in federated learning, assisted learning, and multi-armed bandit with both theory and experimental results.
Abstract:Personalized FL has been widely used to cater to heterogeneity challenges with non-IID data. A primary obstacle is considering the personalization process from the client's perspective to preserve their autonomy. Allowing the clients to participate in personalized FL decisions becomes significant due to privacy and security concerns, where the clients may not be at liberty to share private information necessary for producing good quality personalized models. Moreover, clients with high-quality data and resources are reluctant to participate in the FL process without reasonable incentive. In this paper, we propose PI-FL, a one-shot personalization solution complemented by a token-based incentive mechanism that rewards personalized training. PI-FL outperforms other state-of-the-art approaches and can generate good-quality personalized models while respecting clients' privacy.