Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!
Abstract:Along with the development of the modern smart city, human-centric video analysis is encountering the challenge of diverse and complex events in real scenes. A complex event relates to dense crowds, anomalous individual, or collective behavior. However, limited by the scale of available surveillance video datasets, few existing human analysis approaches report their performances on such complex events. To this end, we present a new large-scale dataset, named Human-in-Events or HiEve (human-centric video analysis in complex events), for understanding human motions, poses, and actions in a variety of realistic events, especially crowd & complex events. It contains a record number of poses (>1M), the largest number of action labels (>56k) for complex events, and one of the largest number of trajectories lasting for long terms (with average trajectory length >480). Besides, an online evaluation server is built for researchers to evaluate their approaches. Furthermore, we conduct extensive experiments on recent video analysis approaches, demonstrating that the HiEve is a challenging dataset for human-centric video analysis. We expect that the dataset will advance the development of cutting-edge techniques in human-centric analysis and the understanding of complex events. The dataset is available at http://humaninevents.org
* Dataset for ACM MM'20 Grand Challenge on Large-scale Human-centric
Video Analysis in Complex Events (http://humaninevents.org)