Abstract:How multimodal large language models (MLLMs) perceive the visual world remains a mystery. To one extreme, object and relation modeling may be implicitly implemented with inductive biases, for example by treating objects as tokens. To the other extreme, empirical results reveal the surprising finding that simply performing visual captioning, which tends to ignore spatial configuration of the objects, serves as a strong baseline for video understanding. We aim to answer the question: how can objects help video-language understanding in MLLMs? We tackle the question from the object representation and adaptation perspectives. Specifically, we investigate the trade-off between representation expressiveness (e.g., distributed versus symbolic) and integration difficulty (e.g., data-efficiency when learning the adapters). Through extensive evaluations on five video question answering datasets, we confirm that explicit integration of object-centric representation remains necessary, and the symbolic objects can be most easily integrated while being performant for question answering. We hope our findings can encourage the community to explore the explicit integration of perception modules into MLLM design. Our code and models will be publicly released.
Abstract:The ionic bonding across the lattice and ordered microscopic structures endow crystals with unique symmetry and determine their macroscopic properties. Unconventional crystals, in particular, exhibit non-traditional lattice structures or possess exotic physical properties, making them intriguing subjects for investigation. Therefore, to accurately predict the physical and chemical properties of crystals, it is crucial to consider long-range orders. While GNN excels at capturing the local environment of atoms in crystals, they often face challenges in effectively capturing longer-ranged interactions due to their limited depth. In this paper, we propose CrysToGraph ($\textbf{Crys}$tals with $\textbf{T}$ransformers $\textbf{o}$n $\textbf{Graph}$s), a novel transformer-based geometric graph network designed specifically for unconventional crystalline systems, and UnconvBench, a comprehensive benchmark to evaluate models' predictive performance on unconventional crystal materials such as defected crystals, low-dimension crystals and MOF. CrysToGraph effectively captures short-range interactions with transformer-based graph convolution blocks as well as long-range interactions with graph-wise transformer blocks. CrysToGraph proofs its effectiveness in modelling unconventional crystal materials in multiple tasks, and moreover, it outperforms most existing methods, achieving new state-of-the-art results on the benchmarks of both unconventional crystals and traditional crystals.
Abstract:Learning from videos is an emerging research area that enables robots to acquire skills from human demonstrations, such as procedural videos. To do this, video-language models must be able to obtain structured understandings, such as the temporal segmentation of a demonstration into sequences of actions and skills, and to generalize the understandings to novel domains. In pursuit of this goal, we introduce Spacewalk-18, a benchmark containing two tasks: (1) step recognition and (2) intra-video retrieval over a dataset of temporally segmented and labeled tasks in International Space Station spacewalk recordings. In tandem, the two tasks quantify a model's ability to make use of: (1) out-of-domain visual information; (2) a high temporal context window; and (3) multimodal (text + video) domains. This departs from existing benchmarks for procedural video understanding, which typically deal with short context lengths and can be solved with a single modality. Spacewalk-18, with its inherent multimodal and long-form complexity, exposes the high difficulty of task recognition and segmentation. We find that state-of-the-art methods perform poorly on our benchmark, demonstrating that the goal of generalizable procedural video understanding models is far out and underscoring the need to develop new approaches to these tasks. Data, model, and code will be publicly released.
Abstract:Inferring past human motion from RGB images is challenging due to the inherent uncertainty of the prediction problem. Thermal images, on the other hand, encode traces of past human-object interactions left in the environment via thermal radiation measurement. Based on this observation, we collect the first RGB-Thermal dataset for human motion analysis, dubbed Thermal-IM. Then we develop a three-stage neural network model for accurate past human pose estimation. Comprehensive experiments show that thermal cues significantly reduce the ambiguities of this task, and the proposed model achieves remarkable performance. The dataset is available at https://github.com/ZitianTang/Thermal-IM.