Abstract:Despite real-time planners exhibiting remarkable performance in autonomous driving, the growing exploration of Large Language Models (LLMs) has opened avenues for enhancing the interpretability and controllability of motion planning. Nevertheless, LLM-based planners continue to encounter significant challenges, including elevated resource consumption and extended inference times, which pose substantial obstacles to practical deployment. In light of these challenges, we introduce AsyncDriver, a new asynchronous LLM-enhanced closed-loop framework designed to leverage scene-associated instruction features produced by LLM to guide real-time planners in making precise and controllable trajectory predictions. On one hand, our method highlights the prowess of LLMs in comprehending and reasoning with vectorized scene data and a series of routing instructions, demonstrating its effective assistance to real-time planners. On the other hand, the proposed framework decouples the inference processes of the LLM and real-time planners. By capitalizing on the asynchronous nature of their inference frequencies, our approach have successfully reduced the computational cost introduced by LLM, while maintaining comparable performance. Experiments show that our approach achieves superior closed-loop evaluation performance on nuPlan's challenging scenarios.
Abstract:Panoptic Narrative Grounding (PNG) is an emerging task whose goal is to segment visual objects of things and stuff categories described by dense narrative captions of a still image. The previous two-stage approach first extracts segmentation region proposals by an off-the-shelf panoptic segmentation model, then conducts coarse region-phrase matching to ground the candidate regions for each noun phrase. However, the two-stage pipeline usually suffers from the performance limitation of low-quality proposals in the first stage and the loss of spatial details caused by region feature pooling, as well as complicated strategies designed for things and stuff categories separately. To alleviate these drawbacks, we propose a one-stage end-to-end Pixel-Phrase Matching Network (PPMN), which directly matches each phrase to its corresponding pixels instead of region proposals and outputs panoptic segmentation by simple combination. Thus, our model can exploit sufficient and finer cross-modal semantic correspondence from the supervision of densely annotated pixel-phrase pairs rather than sparse region-phrase pairs. In addition, we also propose a Language-Compatible Pixel Aggregation (LCPA) module to further enhance the discriminative ability of phrase features through multi-round refinement, which selects the most compatible pixels for each phrase to adaptively aggregate the corresponding visual context. Extensive experiments show that our method achieves new state-of-the-art performance on the PNG benchmark with 4.0 absolute Average Recall gains.