Abstract:Although few-shot action recognition based on metric learning paradigm has achieved significant success, it fails to address the following issues: (1) inadequate action relation modeling and underutilization of multi-modal information; (2) challenges in handling video matching problems with different lengths and speeds, and video matching problems with misalignment of video sub-actions. To address these issues, we propose a Two-Stream Joint Matching method based on contrastive learning (TSJM), which consists of two modules: Multi-modal Contrastive Learning Module (MCL) and Joint Matching Module (JMM). The objective of the MCL is to extensively investigate the inter-modal mutual information relationships, thereby thoroughly extracting modal information to enhance the modeling of action relationships. The JMM aims to simultaneously address the aforementioned video matching problems. The effectiveness of the proposed method is evaluated on two widely used few shot action recognition datasets, namely, SSv2 and Kinetics. Comprehensive ablation experiments are also conducted to substantiate the efficacy of our proposed approach.
Abstract:The hand-eye calibration problem is an important application problem in robot research. Based on the 2-norm of dual quaternion vectors, we propose a new dual quaternion optimization method for the hand-eye calibration problem. The dual quaternion optimization problem is decomposed to two quaternion optimization subproblems. The first quaternion optimization subproblem governs the rotation of the robot hand. It can be solved efficiently by the eigenvalue decomposition or singular value decomposition. If the optimal value of the first quaternion optimization subproblem is zero, then the system is rotationwise noiseless, i.e., there exists a ``perfect'' robot hand motion which meets all the testing poses rotationwise exactly. In this case, we apply the regularization technique for solving the second subproblem to minimize the distance of the translation. Otherwise we apply the patching technique to solve the second quaternion optimization subproblem. Then solving the second quaternion optimization subproblem turns out to be solving a quadratically constrained quadratic program. In this way, we give a complete description for the solution set of hand-eye calibration problems. This is new in the hand-eye calibration literature. The numerical results are also presented to show the efficiency of the proposed method.
Abstract:With video-level labels, weakly supervised temporal action localization (WTAL) applies a localization-by-classification paradigm to detect and classify the action in untrimmed videos. Due to the characteristic of classification, class-specific background snippets are inevitably mis-activated to improve the discriminability of the classifier in WTAL. To alleviate the disturbance of background, existing methods try to enlarge the discrepancy between action and background through modeling background snippets with pseudo-snippet-level annotations, which largely rely on artificial hypotheticals. Distinct from the previous works, we present an adversarial learning strategy to break the limitation of mining pseudo background snippets. Concretely, the background classification loss forces the whole video to be regarded as the background by a background gradient reinforcement strategy, confusing the recognition model. Reversely, the foreground(action) loss guides the model to focus on action snippets under such conditions. As a result, competition between the two classification losses drives the model to boost its ability for action modeling. Simultaneously, a novel temporal enhancement network is designed to facilitate the model to construct temporal relation of affinity snippets based on the proposed strategy, for further improving the performance of action localization. Finally, extensive experiments conducted on THUMOS14 and ActivityNet1.2 demonstrate the effectiveness of the proposed method.
Abstract:In pattern classification, polynomial classifiers are well-studied methods as they are capable of generating complex decision surfaces. Unfortunately, the use of multivariate polynomials is limited to kernels as in support vector machines, because polynomials quickly become impractical for high-dimensional problems. In this paper, we effectively overcome the curse of dimensionality by employing the tensor train format to represent a polynomial classifier. Based on the structure of tensor trains, two learning algorithms are proposed which involve solving different optimization problems of low computational complexity. Furthermore, we show how both regularization to prevent overfitting and parallelization, which enables the use of large training sets, are incorporated into these methods. Both the efficiency and efficacy of our tensor-based polynomial classifier are then demonstrated on the two popular datasets USPS and MNIST.