Abstract:Knowledge Graph Completion (KGC) has garnered massive research interest recently, and most existing methods are designed following a transductive setting where all entities are observed during training. Despite the great progress on the transductive KGC, these methods struggle to conduct reasoning on emerging KGs involving unseen entities. Thus, inductive KGC, which aims to deduce missing links among unseen entities, has become a new trend. Many existing studies transform inductive KGC as a graph classification problem by extracting enclosing subgraphs surrounding each candidate triple. Unfortunately, they still face certain challenges, such as the expensive time consumption caused by the repeat extraction of enclosing subgraphs, and the deficiency of entity-independent feature learning. To address these issues, we propose a global-local anchor representation (GLAR) learning method for inductive KGC. Unlike previous methods that utilize enclosing subgraphs, we extract a shared opening subgraph for all candidates and perform reasoning on it, enabling the model to perform reasoning more efficiently. Moreover, we design some transferable global and local anchors to learn rich entity-independent features for emerging entities. Finally, a global-local graph reasoning model is applied on the opening subgraph to rank all candidates. Extensive experiments show that our GLAR outperforms most existing state-of-the-art methods.
Abstract:Knowledge graphs (KGs) on COVID-19 have been constructed to accelerate the research process of COVID-19. However, KGs are always incomplete, especially the new constructed COVID-19 KGs. Link prediction task aims to predict missing entities for (e, r, t) or (h, r, e), where h and t are certain entities, e is an entity that needs to be predicted and r is a relation. This task also has the potential to solve COVID-19 related KGs' incomplete problem. Although various knowledge graph embedding (KGE) approaches have been proposed to the link prediction task, these existing methods suffer from the limitation of using a single scoring function, which fails to capture rich features of COVID-19 KGs. In this work, we propose the MDistMult model that leverages multiple scoring functions to extract more features from existing triples. We employ experiments on the CCKS2020 COVID-19 Antiviral Drugs Knowledge Graph (CADKG). The experimental results demonstrate that our MDistMult achieves state-of-the-art performance in link prediction task on the CADKG dataset
Abstract:Context: Stack Overflow is very helpful for software developers who are seeking answers to programming problems. Previous studies have shown that a growing number of questions are of low-quality and thus obtain less attention from potential answerers. Gao et al. proposed a LSTM-based model (i.e., BiLSTM-CC) to automatically generate question titles from the code snippets to improve the question quality. However, only using the code snippets in question body cannot provide sufficient information for title generation, and LSTMs cannot capture the long-range dependencies between tokens. Objective: We propose CCBERT, a deep learning based novel model to enhance the performance of question title generation by making full use of the bi-modal information of the entire question body. Methods: CCBERT follows the encoder-decoder paradigm, and uses CodeBERT to encode the question body into hidden representations, a stacked Transformer decoder to generate predicted tokens, and an additional copy attention layer to refine the output distribution. Both the encoder and decoder perform the multi-head self-attention operation to better capture the long-range dependencies. We build a dataset containing more than 120,000 high-quality questions filtered from the data officially published by Stack Overflow to verify the effectiveness of the CCBERT model. Results: CCBERT achieves a better performance on the dataset, and especially outperforms BiLSTM-CC and a multi-purpose pre-trained model (BART) by 14% and 4% on average, respectively. Experiments on both code-only and low-resource datasets also show the superiority of CCBERT with less performance degradation, which are 40% and 13.5% for BiLSTM-CC, while 24% and 5% for CCBERT, respectively.