Abstract:The rapid growth in the parameter size of Large Language Models (LLMs) has led to the development of Parameter-Efficient Fine-Tuning (PEFT) methods to alleviate the computational costs of fine-tuning. Among these, Fisher Induced Sparse uncHanging (FISH) Mask is a selection-based PEFT technique that identifies a subset of pre-trained parameters for fine-tuning based on approximate Fisher information. However, the integration of FISH Mask with other PEFT methods, such as LoRA and Adapters, remains underexplored. In this paper, we propose FISH-Tuning, a novel approach that incorporates FISH Mask into addition-based and reparameterization-based PEFT methods, including LoRA, Adapters, and their variants. By leveraging Fisher information to select critical parameters within these methods, FISH-Tuning achieves superior performance without additional memory overhead or inference latency. Experimental results across various datasets and pre-trained models demonstrate that FISH-Tuning consistently outperforms the vanilla PEFT methods with the same proportion of trainable parameters.
Abstract:Knowledge Graph Completion (KGC) has garnered massive research interest recently, and most existing methods are designed following a transductive setting where all entities are observed during training. Despite the great progress on the transductive KGC, these methods struggle to conduct reasoning on emerging KGs involving unseen entities. Thus, inductive KGC, which aims to deduce missing links among unseen entities, has become a new trend. Many existing studies transform inductive KGC as a graph classification problem by extracting enclosing subgraphs surrounding each candidate triple. Unfortunately, they still face certain challenges, such as the expensive time consumption caused by the repeat extraction of enclosing subgraphs, and the deficiency of entity-independent feature learning. To address these issues, we propose a global-local anchor representation (GLAR) learning method for inductive KGC. Unlike previous methods that utilize enclosing subgraphs, we extract a shared opening subgraph for all candidates and perform reasoning on it, enabling the model to perform reasoning more efficiently. Moreover, we design some transferable global and local anchors to learn rich entity-independent features for emerging entities. Finally, a global-local graph reasoning model is applied on the opening subgraph to rank all candidates. Extensive experiments show that our GLAR outperforms most existing state-of-the-art methods.