Abstract:Chinese Spell Checking (CSC) is a widely used technology, which plays a vital role in speech to text (STT) and optical character recognition (OCR). Most of the existing CSC approaches relying on BERT architecture achieve excellent performance. However, limited by the scale of the foundation model, BERT-based method does not work well in few-shot scenarios, showing certain limitations in practical applications. In this paper, we explore using an in-context learning method named RS-LLM (Rich Semantic based LLMs) to introduce large language models (LLMs) as the foundation model. Besides, we study the impact of introducing various Chinese rich semantic information in our framework. We found that by introducing a small number of specific Chinese rich semantic structures, LLMs achieve better performance than the BERT-based model on few-shot CSC task. Furthermore, we conduct experiments on multiple datasets, and the experimental results verified the superiority of our proposed framework.
Abstract:In view of the huge number of parameters of Large language models (LLMs) , tuning all parameters is very costly, and accordingly fine-tuning specific parameters is more sensible. Most of parameter efficient fine-tuning (PEFT) concentrate on parameter selection strategies, such as additive method, selective method and reparametrization-based method. However, there are few methods that consider the impact of data samples on parameter selecting, such as Fish Mask based method. Fish Mask randomly choose a part of data samples and treat them equally during parameter selection, which is unable to dynamically select optimal parameters for inconstant data distributions. In this work, we adopt a data-oriented perspective, then proposing an IRD ($\mathrm{\underline I}$terative sample-parameter $\mathrm{\underline R}$ange $\mathrm{\underline D}$ecreasing) algorithm to search the best setting of sample-parameter pair for FISH Mask. In each iteration, by searching the set of samples and parameters with larger Fish information, IRD can find better sample-parameter pair in most scale. We demonstrate the effectiveness and rationality of proposed strategy by conducting experiments on GLUE benchmark. Experimental results show our strategy optimizes the parameter selection and achieves preferable performance.