Abstract:Artificial Intelligence predicts drug properties by encoding drug molecules, aiding in the rapid screening of candidates. Different molecular representations, such as SMILES and molecule graphs, contain complementary information for molecular encoding. Thus exploiting complementary information from different molecular representations is one of the research priorities in molecular encoding. Most existing methods for combining molecular multi-modalities only use molecular-level information, making it hard to encode intra-molecular alignment information between different modalities. To address this issue, we propose a multi-granularity fusion method that is MolFusion. The proposed MolFusion consists of two key components: (1) MolSim, a molecular-level encoding component that achieves molecular-level alignment between different molecular representations. and (2) AtomAlign, an atomic-level encoding component that achieves atomic-level alignment between different molecular representations. Experimental results show that MolFusion effectively utilizes complementary multimodal information, leading to significant improvements in performance across various classification and regression tasks.
Abstract:In the field of natural language processing (NLP), Large Language Models (LLMs) have precipitated a paradigm shift, markedly enhancing performance in natural language generation tasks. Despite these advancements, the comprehensive evaluation of LLMs remains an inevitable challenge for the community. Recently, the utilization of Multiple Choice Question Answering (MCQA) as a benchmark for LLMs has gained considerable traction. This study investigates the rationality of MCQA as an evaluation method for LLMs. If LLMs genuinely understand the semantics of questions, their performance should exhibit consistency across the varied configurations derived from the same questions. Contrary to this expectation, our empirical findings suggest a notable disparity in the consistency of LLM responses, which we define as REsponse VAriability Syndrome (REVAS) of the LLMs, indicating that current MCQA-based benchmarks may not adequately capture the true capabilities of LLMs, which underscores the need for more robust evaluation mechanisms in assessing the performance of LLMs.
Abstract:Automatic diagnosis is a significant application of AI in healthcare, where diagnoses are generated based on the symptom description of patients. Previous works have approached this task directly by modeling the relationship between the normalized symptoms and all possible diseases. However, in the clinical diagnostic process, patients are initially consulted by a general practitioner and, if necessary, referred to specialists in specific domains for a more comprehensive evaluation. The final diagnosis often emerges from a collaborative consultation among medical specialist groups. Recently, large language models have shown impressive capabilities in natural language understanding. In this study, we adopt tuning-free LLM-based agents as medical practitioners and propose the Agent-derived Multi-Specialist Consultation (AMSC) framework to model the diagnosis process in the real world by adaptively fusing probability distributions of agents over potential diseases. Experimental results demonstrate the superiority of our approach compared with baselines. Notably, our approach requires significantly less parameter updating and training time, enhancing efficiency and practical utility. Furthermore, we delve into a novel perspective on the role of implicit symptoms within the context of automatic diagnosis.
Abstract:Explaining black-box model behavior with natural language has achieved impressive results in various NLP tasks. Recent research has explored the utilization of subsequences from the input text as a rationale, providing users with evidence to support the model decision. Although existing frameworks excel in generating high-quality rationales while achieving high task performance, they neglect to account for the unreliable link between the generated rationale and model decision. In simpler terms, a model may make correct decisions while attributing wrong rationales, or make poor decisions while attributing correct rationales. To mitigate this issue, we propose a unified two-stage framework known as Self-Attribution and Decision-Making (SADM). Through extensive experiments on five reasoning datasets from the ERASER benchmark, we demonstrate that our framework not only establishes a more reliable link between the generated rationale and model decision but also achieves competitive results in task performance and the quality of rationale. Furthermore, we explore the potential of our framework in semi-supervised scenarios.
Abstract:Large Language Models (LLMs) have demonstrated remarkable success in diverse natural language processing (NLP) tasks in general domains. However, LLMs sometimes generate responses with the hallucination about medical facts due to limited domain knowledge. Such shortcomings pose potential risks in the utilization of LLMs within medical contexts. To address this challenge, we propose knowledge-tuning, which leverages structured medical knowledge bases for the LLMs to grasp domain knowledge efficiently and facilitate reliable response generation. We also release cMedKnowQA, a Chinese medical knowledge question-answering dataset constructed from medical knowledge bases to assess the medical knowledge proficiency of LLMs. Experimental results show that the LLMs which are knowledge-tuned with cMedKnowQA, can exhibit higher levels of accuracy in response generation compared with vanilla instruction-tuning and offer a new reliable way for the domain adaptation of LLMs.
Abstract:Large Language Models (LLMs), such as the LLaMA model, have demonstrated their effectiveness in various general-domain natural language processing (NLP) tasks. Nevertheless, LLMs have not yet performed optimally in biomedical domain tasks due to the need for medical expertise in the responses. In response to this challenge, we propose HuaTuo, a LLaMA-based model that has been supervised-fine-tuned with generated QA (Question-Answer) instances. The experimental results demonstrate that HuaTuo generates responses that possess more reliable medical knowledge. Our proposed HuaTuo model is accessible at https://github.com/SCIR-HI/Huatuo-Llama-Med-Chinese.