Abstract:This paper introduces a novel approach using Large Language Models (LLMs) integrated into an agent framework for flexible and efficient personal mobility generation. LLMs overcome the limitations of previous models by efficiently processing semantic data and offering versatility in modeling various tasks. Our approach addresses the critical need to align LLMs with real-world urban mobility data, focusing on three research questions: aligning LLMs with rich activity data, developing reliable activity generation strategies, and exploring LLM applications in urban mobility. The key technical contribution is a novel LLM agent framework that accounts for individual activity patterns and motivations, including a self-consistency approach to align LLMs with real-world activity data and a retrieval-augmented strategy for interpretable activity generation. In experimental studies, comprehensive validation is performed using real-world data. This research marks the pioneering work of designing an LLM agent framework for activity generation based on real-world human activity data, offering a promising tool for urban mobility analysis.
Abstract:Recent advancements have shown that agents powered by large language models (LLMs) possess capabilities to simulate human behaviors and societal dynamics. However, the potential for LLM agents to spontaneously establish collaborative relationships in the absence of explicit instructions has not been studied. To address this gap, we conduct three case studies, revealing that LLM agents are capable of spontaneously forming collaborations even within competitive settings. This finding not only demonstrates the capacity of LLM agents to mimic competition and cooperation in human societies but also validates a promising vision of computational social science. Specifically, it suggests that LLM agents could be utilized to model human social interactions, including those with spontaneous collaborations, thus offering insights into social phenomena. The source codes for this study are available at https://github.com/wuzengqing001225/SABM_ShallWeTalk .
Abstract:Computer simulations offer a robust toolset for exploring complex systems across various disciplines. A particularly impactful approach within this realm is Agent-Based Modeling (ABM), which harnesses the interactions of individual agents to emulate intricate system dynamics. ABM's strength lies in its bottom-up methodology, illuminating emergent phenomena by modeling the behaviors of individual components of a system. Yet, ABM has its own set of challenges, notably its struggle with modeling natural language instructions and common sense in mathematical equations or rules. This paper seeks to transcend these boundaries by integrating Large Language Models (LLMs) like GPT into ABM. This amalgamation gives birth to a novel framework, Smart Agent-Based Modeling (SABM). Building upon the concept of smart agents -- entities characterized by their intelligence, adaptability, and computation ability -- we explore in the direction of utilizing LLM-powered agents to simulate real-world scenarios with increased nuance and realism. In this comprehensive exploration, we elucidate the state of the art of ABM, introduce SABM's potential and methodology, and present three case studies (source codes available at https://github.com/Roihn/SABM), demonstrating the SABM methodology and validating its effectiveness in modeling real-world systems. Furthermore, we cast a vision towards several aspects of the future of SABM, anticipating a broader horizon for its applications. Through this endeavor, we aspire to redefine the boundaries of computer simulations, enabling a more profound understanding of complex systems.
Abstract:Firm competition and collusion involve complex dynamics, particularly when considering communication among firms. Such issues can be modeled as problems of complex systems, traditionally approached through experiments involving human subjects or agent-based modeling methods. We propose an innovative framework called Smart Agent-Based Modeling (SABM), wherein smart agents, supported by GPT-4 technologies, represent firms, and interact with one another. We conducted a controlled experiment to study firm price competition and collusion behaviors under various conditions. SABM is more cost-effective and flexible compared to conducting experiments with human subjects. Smart agents possess an extensive knowledge base for decision-making and exhibit human-like strategic abilities, surpassing traditional ABM agents. Furthermore, smart agents can simulate human conversation and be personalized, making them ideal for studying complex situations involving communication. Our results demonstrate that, in the absence of communication, smart agents consistently reach tacit collusion, leading to prices converging at levels higher than the Bertrand equilibrium price but lower than monopoly or cartel prices. When communication is allowed, smart agents achieve a higher-level collusion with prices close to cartel prices. Collusion forms more quickly with communication, while price convergence is smoother without it. These results indicate that communication enhances trust between firms, encouraging frequent small price deviations to explore opportunities for a higher-level win-win situation and reducing the likelihood of triggering a price war. We also assigned different personas to firms to analyze behavioral differences and tested variant models under diverse market structures. The findings showcase the effectiveness and robustness of SABM and provide intriguing insights into competition and collusion.