This paper introduces a novel approach using Large Language Models (LLMs) integrated into an agent framework for flexible and efficient personal mobility generation. LLMs overcome the limitations of previous models by efficiently processing semantic data and offering versatility in modeling various tasks. Our approach addresses the critical need to align LLMs with real-world urban mobility data, focusing on three research questions: aligning LLMs with rich activity data, developing reliable activity generation strategies, and exploring LLM applications in urban mobility. The key technical contribution is a novel LLM agent framework that accounts for individual activity patterns and motivations, including a self-consistency approach to align LLMs with real-world activity data and a retrieval-augmented strategy for interpretable activity generation. In experimental studies, comprehensive validation is performed using real-world data. This research marks the pioneering work of designing an LLM agent framework for activity generation based on real-world human activity data, offering a promising tool for urban mobility analysis.