Abstract:Modeling discourse -- the linguistic phenomena that go beyond individual sentences, is a fundamental yet challenging aspect of natural language processing (NLP). However, existing evaluation benchmarks primarily focus on the evaluation of inter-sentence properties and overlook critical discourse phenomena that cross sentences. To bridge the gap, we propose Disco-Bench, a benchmark that can evaluate intra-sentence discourse properties across a diverse set of NLP tasks, covering understanding, translation, and generation. Disco-Bench consists of 9 document-level testsets in the literature domain, which contain rich discourse phenomena (e.g. cohesion and coherence) in Chinese and/or English. For linguistic analysis, we also design a diagnostic test suite that can examine whether the target models learn discourse knowledge. We totally evaluate 20 general-, in-domain and commercial models based on Transformer, advanced pretraining architectures and large language models (LLMs). Our results show (1) the challenge and necessity of our evaluation benchmark; (2) fine-grained pretraining based on literary document-level training data consistently improves the modeling of discourse information. We will release the datasets, pretrained models, and leaderboard, which we hope can significantly facilitate research in this field: https://github.com/longyuewangdcu/Disco-Bench.
Abstract:Although instruction-tuned large language models (LLMs) have exhibited remarkable capabilities across various NLP tasks, their effectiveness on other data modalities beyond text has not been fully studied. In this work, we propose Macaw-LLM, a novel multi-modal LLM that seamlessly integrates visual, audio, and textual information. Macaw-LLM consists of three main components: a modality module for encoding multi-modal data, a cognitive module for harnessing pretrained LLMs, and an alignment module for harmonizing diverse representations. Our novel alignment module seamlessly bridges multi-modal features to textual features, simplifying the adaptation process from the modality modules to the cognitive module. In addition, we construct a large-scale multi-modal instruction dataset in terms of multi-turn dialogue, including 69K image instances and 50K video instances. We have made our data, code and model publicly available, which we hope can pave the way for future research in multi-modal LLMs and expand the capabilities of LLMs to handle diverse data modalities and address complex real-world scenarios.