Abstract:Federated learning (FL) has emerged as a prominent machine learning paradigm in edge computing environments, enabling edge devices to collaboratively optimize a global model without sharing their private data. However, existing FL frameworks suffer from efficacy deterioration due to the system heterogeneity inherent in edge computing, especially in the presence of domain shifts across local data. In this paper, we propose a heterogeneous FL framework DapperFL, to enhance model performance across multiple domains. In DapperFL, we introduce a dedicated Model Fusion Pruning (MFP) module to produce personalized compact local models for clients to address the system heterogeneity challenges. The MFP module prunes local models with fused knowledge obtained from both local and remaining domains, ensuring robustness to domain shifts. Additionally, we design a Domain Adaptive Regularization (DAR) module to further improve the overall performance of DapperFL. The DAR module employs regularization generated by the pruned model, aiming to learn robust representations across domains. Furthermore, we introduce a specific aggregation algorithm for aggregating heterogeneous local models with tailored architectures and weights. We implement DapperFL on a realworld FL platform with heterogeneous clients. Experimental results on benchmark datasets with multiple domains demonstrate that DapperFL outperforms several state-of-the-art FL frameworks by up to 2.28%, while significantly achieving model volume reductions ranging from 20% to 80%. Our code is available at: https://github.com/jyzgh/DapperFL.
Abstract:In the field of Artificial Intelligence, Large Language Models (LLMs) have demonstrated significant advances in user intent understanding and response in a number of specialized domains, including medicine, law, and finance. However, in the unique domain of traditional Chinese medicine (TCM), the performance enhancement of LLMs is challenged by the essential differences between its theories and modern medicine, as well as the lack of specialized corpus resources. In this paper, we aim to construct and organize a professional corpus in the field of TCM, to endow the large model with professional knowledge that is characteristic of TCM theory, and to successfully develop the Qibo model based on LLaMA, which is the first LLM in the field of TCM to undergo a complete training process from pre-training to Supervised Fine-Tuning (SFT). Furthermore, we develop the Qibo-benchmark, a specialized tool for evaluating the performance of LLMs, which is a specialized tool for evaluating the performance of LLMs in the TCM domain. This tool will provide an important basis for quantifying and comparing the understanding and application capabilities of different models in the field of traditional Chinese medicine, and provide guidance for future research directions and practical applications of intelligent assistants for traditional Chinese medicine. Finally, we conducted sufficient experiments to prove that Qibo has good performance in the field of traditional Chinese medicine.
Abstract:Federated Learning (FL) has emerged as a promising solution in Edge Computing (EC) environments to process the proliferation of data generated by edge devices. By collaboratively optimizing the global machine learning models on distributed edge devices, FL circumvents the need for transmitting raw data and enhances user privacy. Despite practical successes, FL still confronts significant challenges including constrained edge device resources, multiple tasks deployment, and data heterogeneity. However, existing studies focus on mitigating the FL training costs of each single task whereas neglecting the resource consumption across multiple tasks in heterogeneous FL scenarios. In this paper, we propose Heterogeneous Federated Learning with Local Parameter Sharing (FedLPS) to fill this gap. FedLPS leverages principles from transfer learning to facilitate the deployment of multiple tasks on a single device by dividing the local model into a shareable encoder and task-specific encoders. To further reduce resource consumption, a channel-wise model pruning algorithm that shrinks the footprint of local models while accounting for both data and system heterogeneity is employed in FedLPS. Additionally, a novel heterogeneous model aggregation algorithm is proposed to aggregate the heterogeneous predictors in FedLPS. We implemented the proposed FedLPS on a real FL platform and compared it with state-of-the-art (SOTA) FL frameworks. The experimental results on five popular datasets and two modern DNN models illustrate that the proposed FedLPS significantly outperforms the SOTA FL frameworks by up to 4.88% and reduces the computational resource consumption by 21.3%. Our code is available at:https://github.com/jyzgh/FedLPS.