Abstract:Machine learning (ML) inference platforms are tasked with balancing two competing goals: ensuring high throughput given many requests, and delivering low-latency responses to support interactive applications. Unfortunately, existing platform knobs (e.g., batch sizes) fail to ease this fundamental tension, and instead only enable users to harshly trade off one property for the other. This paper explores an alternate strategy to taming throughput-latency tradeoffs by changing the granularity at which inference is performed. We present Apparate, a system that automatically applies and manages early exits (EEs) in ML models, whereby certain inputs can exit with results at intermediate layers. To cope with the time-varying overhead and accuracy challenges that EEs bring, Apparate repurposes exits to provide continual feedback that powers several novel runtime monitoring and adaptation strategies. Apparate lowers median response latencies by 40.5-91.5% and 10.0-24.2% for diverse CV and NLP workloads, respectively, without affecting throughputs or violating tight accuracy constraints.
Abstract:Federated learning (FL) is an emerging machine learning (ML) paradigm that enables heterogeneous edge devices to collaboratively train ML models without revealing their raw data to a logically centralized server. Heterogeneity across participants is a fundamental challenge in FL, both in terms of non-independent and identically distributed (Non-IID) data distributions and variations in device capabilities. Many existing works present point solutions to address issues like slow convergence, low final accuracy, and bias in FL, all stemming from the client heterogeneity. We observe that, in a large population, there exist groups of clients with statistically similar data distributions (cohorts). In this paper, we propose Auxo to gradually identify cohorts among large-scale, low-participation, and resource-constrained FL populations. Auxo then adaptively determines how to train cohort-specific models in order to achieve better model performance and ensure resource efficiency. By identifying cohorts with smaller heterogeneity and performing efficient cohort-based training, our extensive evaluations show that Auxo substantially boosts the state-of-the-art solutions in terms of final accuracy, convergence time, and model bias.
Abstract:We present FedScale, a diverse set of challenging and realistic benchmark datasets to facilitate scalable, comprehensive, and reproducible federated learning (FL) research. FedScale datasets are large-scale, encompassing a diverse range of important FL tasks, such as image classification, object detection, language modeling, speech recognition, and reinforcement learning. For each dataset, we provide a unified evaluation protocol using realistic data splits and evaluation metrics. To meet the pressing need for reproducing realistic FL at scale, we have also built an efficient evaluation platform to simplify and standardize the process of FL experimental setup and model evaluation. Our evaluation platform provides flexible APIs to implement new FL algorithms and include new execution backends with minimal developer efforts. Finally, we perform indepth benchmark experiments on these datasets. Our experiments suggest that FedScale presents significant challenges of heterogeneity-aware co-optimizations of the system and statistical efficiency under realistic FL characteristics, indicating fruitful opportunities for future research. FedScale is open-source with permissive licenses and actively maintained, and we welcome feedback and contributions from the community.