Abstract:This paper proposes a fluid antenna (FA)-assisted near-field integrated sensing and communications (ISAC) system enabled by the extremely large-scale simultaneously transmitting and reflecting surface (XL-STARS). By optimizing the communication beamformer, the sensing signal covariance matrix, the XL-STARS phase shift, and the FA position vector, the Cram\'er-Rao bound (CRB), as a metric for sensing performance, is minimized while ensuring the standard communication performance. A double-loop iterative algorithm based on the penalty dual decomposition (PDD) and block coordinate descent (BCD) methods is proposed to solve the non-convex minimization problem by decomposing it into three subproblems and optimizing the coupling variables for each subproblem iteratively. Simulation results validate the superior performance of the proposed algorithm.
Abstract:This paper introduces an integrated sensing, computing, and semantic communication (ISCSC) framework tailored for smart healthcare systems. The framework is evaluated in the context of smart healthcare, optimising the transmit beamforming matrix and semantic extraction ratio for improved data rates, sensing accuracy, and general data protection regulation (GDPR) compliance, while considering IoRT device computing capabilities. Semantic metrics such as semantic transmission rate and semantic secrecy rate are derived to evaluate data rate performance and GDPR risk, respectively, while the Cram\'er-Rao Bound (CRB) assesses sensing performance. Simulation results demonstrate the framework's effectiveness in ensuring reliable sensing, high data rates, and secure communication.
Abstract:This paper investigates the secure resource allocation for a downlink integrated sensing and communication system with multiple legal users and potential eavesdroppers. In the considered model, the base station (BS) simultaneously transmits sensing and communication signals through beamforming design, where the sensing signals can be viewed as artificial noise to enhance the security of communication signals. To further enhance the security in the semantic layer, the semantic information is extracted from the original information before transmission. The user side can only successfully recover the received information with the help of the knowledge base shared with the BS, which is stored in advance. Our aim is to maximize the sum semantic secrecy rate of all users while maintaining the minimum quality of service for each user and guaranteeing overall sensing performance. To solve this sum semantic secrecy rate maximization problem, an iterative algorithm is proposed using the alternating optimization method. The simulation results demonstrate the superiority of the proposed algorithm in terms of secure semantic communication and reliable detection.