Abstract:Quantum computers have the potential to outperform classical computers in important tasks such as optimization and number factoring. They are characterized by limited connectivity, which necessitates the routing of their computational bits, known as qubits, to specific locations during program execution to carry out quantum operations. Traditionally, the NP-hard optimization problem of minimizing the routing overhead has been addressed through sub-optimal rule-based routing techniques with inherent human biases embedded within the cost function design. This paper introduces a solution that integrates Monte Carlo Tree Search (MCTS) with Reinforcement Learning (RL). Our RL-based router, called AlphaRouter, outperforms the current state-of-the-art routing methods and generates quantum programs with up to $20\%$ less routing overhead, thus significantly enhancing the overall efficiency and feasibility of quantum computing.
Abstract:This paper investigates robust semantic communications over multiple-input multiple-output (MIMO) fading channels. Current semantic communications over MIMO channels mainly focus on channel adaptive encoding and decoding, which lacks exploration of signal distribution. To leverage the potential of signal distribution in signal space denoising, we develop a diffusion model over MIMO channels (DM-MIMO), a plugin module at the receiver side in conjunction with singular value decomposition (SVD) based precoding and equalization. Specifically, due to the significant variations in effective noise power over distinct sub-channels, we determine the effective sampling steps accordingly and devise a joint sampling algorithm. Utilizing a three-stage training algorithm, DM-MIMO learns the distribution of the encoded signal, which enables noise elimination over all sub-channels. Experimental results demonstrate that the DM-MIMO effectively reduces the mean square errors (MSE) of the equalized signal and the DM-MIMO semantic communication system (DM-MIMO-JSCC) outperforms the JSCC-based semantic communication system in image reconstruction.
Abstract:Transfer-based attacks craft adversarial examples utilizing a white-box surrogate model to compromise various black-box target models, posing significant threats to many real-world applications. However, existing transfer attacks suffer from either weak transferability or expensive computation. To bridge the gap, we propose a novel sample-based attack, named neighborhood conditional sampling (NCS), which enjoys high transferability with lightweight computation. Inspired by the observation that flat maxima result in better transferability, NCS is formulated as a max-min bi-level optimization problem to seek adversarial regions with high expected adversarial loss and small standard deviations. Specifically, due to the inner minimization problem being computationally intensive to resolve, and affecting the overall transferability, we propose a momentum-based previous gradient inversion approximation (PGIA) method to effectively solve the inner problem without any computation cost. In addition, we prove that two newly proposed attacks, which achieve flat maxima for better transferability, are actually specific cases of NCS under particular conditions. Extensive experiments demonstrate that NCS efficiently generates highly transferable adversarial examples, surpassing the current best method in transferability while requiring only 50% of the computational cost. Additionally, NCS can be seamlessly integrated with other methods to further enhance transferability.
Abstract:Semantic communications have emerged as a new paradigm for improving communication efficiency by transmitting the semantic information of a source message that is most relevant to a desired task at the receiver. Most existing approaches typically utilize neural networks (NNs) to design end-to-end semantic communication systems, where NN-based semantic encoders output continuously distributed signals to be sent directly to the channel in an analog communication fashion. In this work, we propose a joint coding-modulation framework for digital semantic communications by using variational autoencoder (VAE). Our approach learns the transition probability from source data to discrete constellation symbols, thereby avoiding the non-differentiability problem of digital modulation. Meanwhile, by jointly designing the coding and modulation process together, we can match the obtained modulation strategy with the operating channel condition. We also derive a matching loss function with information-theoretic meaning for end-to-end training. Experiments conducted on image semantic communication validate that our proposed joint coding-modulation framework outperforms separate design of semantic coding and modulation under various channel conditions, transmission rates, and modulation orders. Furthermore, its performance gap to analog semantic communication reduces as the modulation order increases while enjoying the hardware implementation convenience.
Abstract:Randomized experiments (a.k.a. A/B tests) are a powerful tool for estimating treatment effects, to inform decisions making in business, healthcare and other applications. In many problems, the treatment has a lasting effect that evolves over time. A limitation with randomized experiments is that they do not easily extend to measure long-term effects, since running long experiments is time-consuming and expensive. In this paper, we take a reinforcement learning (RL) approach that estimates the average reward in a Markov process. Motivated by real-world scenarios where the observed state transition is nonstationary, we develop a new algorithm for a class of nonstationary problems, and demonstrate promising results in two synthetic datasets and one online store dataset.
Abstract:In learning-based semantic communications, neural networks have replaced different building blocks in traditional communication systems. However, the digital modulation still remains a challenge for neural networks. The intrinsic mechanism of neural network based digital modulation is mapping continuous output of the neural network encoder into discrete constellation symbols, which is a non-differentiable function that cannot be trained with existing gradient descend algorithms. To overcome this challenge, in this paper we develop a joint coding-modulation scheme for digital semantic communications with BPSK modulation. In our method, the neural network outputs the likelihood of each constellation point, instead of having a concrete mapping. A random code rather than a deterministic code is hence used, which preserves more information for the symbols with a close likelihood on each constellation point. The joint coding-modulation design can match the modulation process with channel states, and hence improve the performance of digital semantic communications. Experiment results show that our method outperforms existing digital modulation methods in semantic communications over a wide range of SNR, and outperforms neural network based analog modulation method in low SNR regime.