Abstract:Reservoir computing can embed attractors into random neural networks (RNNs), generating a ``mirror'' of a target attractor because of its inherent symmetrical constraints. In these RNNs, we report that an attractor-merging crisis accompanied by intermittency emerges simply by adjusting the global parameter. We further reveal its underlying mechanism through a detailed analysis of the phase-space structure and demonstrate that this bifurcation scenario is intrinsic to a general class of RNNs, independent of training data.
Abstract:Infants often exhibit goal-directed behaviors, such as reaching for a sensory stimulus, even when no external reward criterion is provided. These intrinsically motivated behaviors facilitate spontaneous exploration and learning of the body and environment during early developmental stages. Although computational modeling can offer insight into the mechanisms underlying such behaviors, many existing studies on intrinsic motivation focus primarily on how exploration contributes to acquiring external rewards. In this paper, we propose a novel density model for an agent's own multimodal sensory experiences, called the "self-prior," and investigate whether it can autonomously induce goal-directed behavior. Integrated within an active inference framework based on the free energy principle, the self-prior generates behavioral references purely from an intrinsic process that minimizes mismatches between average past sensory experiences and current observations. This mechanism is also analogous to the acquisition and utilization of a body schema through continuous interaction with the environment. We examine this approach in a simulated environment and confirm that the agent spontaneously reaches toward a tactile stimulus. Our study implements intrinsically motivated behavior shaped by the agent's own sensory experiences, demonstrating the spontaneous emergence of intentional behavior during early development.
Abstract:In biological systems, haptic perception is achieved through both flexible skin and flexible body. In fully soft robots, the fragility of their bodies and the time delays in sensory processing pose significant challenges. The musculoskeletal system possesses both the deformability inherent in soft materials and the durability of rigid-body robots. Additionally, by outsourcing part of the intelligent information processing to the morphology of the musculoskeletal system, applications for dynamic tasks are expected. This study focuses on the pecking movements of birds, which achieve precise haptic perception through the musculoskeletal system of their flexible neck. Physical reservoir computing is applied to flexible structures inspired by an ostrich neck to analyze the relationship between haptic perception and physical characteristics. Combined experiments using both an actual robot and simulations demonstrate that, under appropriate body viscoelasticity, the flexible structure can distinguish objects of varying softness and memorize this information as behaviors. Drawing on these findings and anatomical insights from the ostrich neck, a haptic sensing system is proposed that possesses separability and this behavioral memory in flexible structures, enabling rapid learning and real-time inference. The results demonstrate that through the dynamics of flexible structures, diverse functions can emerge beyond their original design as manipulators.
Abstract:Humans develop certain cognitive abilities to recognize objects and their transformations without explicit supervision, highlighting the importance of unsupervised representation learning. A fundamental challenge in unsupervised representation learning is to separate different transformations in learned feature representations. Although algebraic approaches have been explored, a comprehensive theoretical framework remains underdeveloped. Existing methods decompose transformations based on algebraic independence, but these methods primarily focus on commutative transformations and do not extend to cases where transformations are conditionally independent but noncommutative. To extend current representation learning frameworks, we draw inspiration from Galois theory, where the decomposition of groups through normal subgroups provides an approach for the analysis of structured transformations. Normal subgroups naturally extend commutativity under certain conditions and offer a foundation for the categorization of transformations, even when they do not commute. In this paper, we propose a novel approach that leverages normal subgroups to enable the separation of conditionally independent transformations, even in the absence of commutativity. Through experiments on geometric transformations in images, we show that our method successfully categorizes conditionally independent transformations, such as rotation and translation, in an unsupervised manner, suggesting a close link between group decomposition via normal subgroups and transformation categorization in representation learning.
Abstract:Autonomous agents capable of diverse object manipulations should be able to acquire a wide range of manipulation skills with high reusability. Although advances in deep learning have made it increasingly feasible to replicate the dexterity of human teleoperation in robots, generalizing these acquired skills to previously unseen scenarios remains a significant challenge. In this study, we propose a novel algorithm, Gaze-based Bottleneck-aware Robot Manipulation (GazeBot), which enables high reusability of the learned motions even when the object positions and end-effector poses differ from those in the provided demonstrations. By leveraging gaze information and motion bottlenecks, both crucial features for object manipulation, GazeBot achieves high generalization performance compared with state-of-the-art imitation learning methods, without sacrificing its dexterity and reactivity. Furthermore, the training process of GazeBot is entirely data-driven once a demonstration dataset with gaze data is provided. Videos and code are available at https://crumbyrobotics.github.io/gazebot.
Abstract:In general, objects can be distinguished on the basis of their features, such as color or shape. In particular, it is assumed that similarity judgments about such features can be processed independently in different metric spaces. However, the unsupervised categorization mechanism of metric spaces corresponding to object features remains unknown. Here, we show that the artificial neural network system can autonomously categorize metric spaces through representation learning to satisfy the algebraic independence between neural networks, and project sensory information onto multiple high-dimensional metric spaces to independently evaluate the differences and similarities between features. Conventional methods often constrain the axes of the latent space to be mutually independent or orthogonal. However, the independent axes are not suitable for categorizing metric spaces. High-dimensional metric spaces that are independent of each other are not uniquely determined by the mutually independent axes, because any combination of independent axes can form mutually independent spaces. In other words, the mutually independent axes cannot be used to naturally categorize different feature spaces, such as color space and shape space. Therefore, constraining the axes to be mutually independent makes it difficult to categorize high-dimensional metric spaces. To overcome this problem, we developed a method to constrain only the spaces to be mutually independent and not the composed axes to be independent. Our theory provides general conditions for the unsupervised categorization of independent metric spaces, thus advancing the mathematical theory of functional differentiation of neural networks.
Abstract:In imitation learning for robotic manipulation, decomposing object manipulation tasks into multiple semantic actions is essential. This decomposition enables the reuse of learned skills in varying contexts and the combination of acquired skills to perform novel tasks, rather than merely replicating demonstrated motions. Gaze, an evolutionary tool for understanding ongoing events, plays a critical role in human object manipulation, where it strongly correlates with motion planning. In this study, we propose a simple yet robust task decomposition method based on gaze transitions. We hypothesize that an imitation agent's gaze control, fixating on specific landmarks and transitioning between them, naturally segments demonstrated manipulations into sub-tasks. Notably, our method achieves consistent task decomposition across all demonstrations, which is desirable in contexts such as machine learning. Using teleoperation, a common modality in imitation learning for robotic manipulation, we collected demonstration data for various tasks, applied our segmentation method, and evaluated the characteristics and consistency of the resulting sub-tasks. Furthermore, through extensive testing across a wide range of hyperparameter variations, we demonstrated that the proposed method possesses the robustness necessary for application to different robotic systems.
Abstract:Spiking neural networks (SNNs), the models inspired by the mechanisms of real neurons in the brain, transmit and represent information by employing discrete action potentials or spikes. The sparse, asynchronous properties of information processing make SNNs highly energy efficient, leading to SNNs being promising solutions for implementing neural networks in neuromorphic devices. However, the nondifferentiable nature of SNN neurons makes it a challenge to train them. The current training methods of SNNs that are based on error backpropagation (BP) and precisely designing surrogate gradient are difficult to implement and biologically implausible, hindering the implementation of SNNs on neuromorphic devices. Thus, it is important to train SNNs with a method that is both physically implementatable and biologically plausible. In this paper, we propose using augmented direct feedback alignment (aDFA), a gradient-free approach based on random projection, to train SNNs. This method requires only partial information of the forward process during training, so it is easy to implement and biologically plausible. We systematically demonstrate the feasibility of the proposed aDFA-SNNs scheme, propose its effective working range, and analyze its well-performing settings by employing genetic algorithm. We also analyze the impact of crucial features of SNNs on the scheme, thus demonstrating its superiority and stability over BP and conventional direct feedback alignment. Our scheme can achieve competitive performance without accurate prior knowledge about the utilized system, thus providing a valuable reference for physically training SNNs.
Abstract:The effects of noise on memory in a linear recurrent network are theoretically investigated. Memory is characterized by its ability to store previous inputs in its instantaneous state of network, which receives a correlated or uncorrelated noise. Two major properties are revealed: First, the memory reduced by noise is uniquely determined by the noise's power spectral density (PSD). Second, the memory will not decrease regardless of noise intensity if the PSD is in a certain class of distribution (including power law). The results are verified using the human brain signals, showing good agreement.
Abstract:The body morphology plays an important role in the way information is perceived and processed by an agent. We address an information theory (IT) account on how the precision of sensors, the accuracy of motors, their placement, the body geometry, shape the information structure in robots and computational codes. As an original idea, we envision the robot's body as a physical communication channel through which information is conveyed, in and out, despite intrinsic noise and material limitations. Following this, entropy, a measure of information and uncertainty, can be used to maximize the efficiency of robot design and of algorithmic codes per se. This is known as the principle of Entropy Maximization (PEM) introduced in biology by Barlow in 1969. The Shannon's source coding theorem provides then a framework to compare different types of bodies in terms of sensorimotor information. In line with PME, we introduce a special class of efficient codes used in IT that reached the Shannon limits in terms of information capacity for error correction and robustness against noise, and parsimony. These efficient codes, which exploit insightfully quantization and randomness, permit to deal with uncertainty, redundancy and compacity. These features can be used for perception and control in intelligent systems. In various examples and closing discussions, we reflect on the broader implications of our framework that we called Informational Embodiment to motor theory and bio-inspired robotics, touching upon concepts like motor synergies, reservoir computing, and morphological computation. These insights can contribute to a deeper understanding of how information theory intersects with the embodiment of intelligence in both natural and artificial systems.