Abstract:Autonomous agents capable of diverse object manipulations should be able to acquire a wide range of manipulation skills with high reusability. Although advances in deep learning have made it increasingly feasible to replicate the dexterity of human teleoperation in robots, generalizing these acquired skills to previously unseen scenarios remains a significant challenge. In this study, we propose a novel algorithm, Gaze-based Bottleneck-aware Robot Manipulation (GazeBot), which enables high reusability of the learned motions even when the object positions and end-effector poses differ from those in the provided demonstrations. By leveraging gaze information and motion bottlenecks, both crucial features for object manipulation, GazeBot achieves high generalization performance compared with state-of-the-art imitation learning methods, without sacrificing its dexterity and reactivity. Furthermore, the training process of GazeBot is entirely data-driven once a demonstration dataset with gaze data is provided. Videos and code are available at https://crumbyrobotics.github.io/gazebot.
Abstract:In general, objects can be distinguished on the basis of their features, such as color or shape. In particular, it is assumed that similarity judgments about such features can be processed independently in different metric spaces. However, the unsupervised categorization mechanism of metric spaces corresponding to object features remains unknown. Here, we show that the artificial neural network system can autonomously categorize metric spaces through representation learning to satisfy the algebraic independence between neural networks, and project sensory information onto multiple high-dimensional metric spaces to independently evaluate the differences and similarities between features. Conventional methods often constrain the axes of the latent space to be mutually independent or orthogonal. However, the independent axes are not suitable for categorizing metric spaces. High-dimensional metric spaces that are independent of each other are not uniquely determined by the mutually independent axes, because any combination of independent axes can form mutually independent spaces. In other words, the mutually independent axes cannot be used to naturally categorize different feature spaces, such as color space and shape space. Therefore, constraining the axes to be mutually independent makes it difficult to categorize high-dimensional metric spaces. To overcome this problem, we developed a method to constrain only the spaces to be mutually independent and not the composed axes to be independent. Our theory provides general conditions for the unsupervised categorization of independent metric spaces, thus advancing the mathematical theory of functional differentiation of neural networks.
Abstract:In imitation learning for robotic manipulation, decomposing object manipulation tasks into multiple semantic actions is essential. This decomposition enables the reuse of learned skills in varying contexts and the combination of acquired skills to perform novel tasks, rather than merely replicating demonstrated motions. Gaze, an evolutionary tool for understanding ongoing events, plays a critical role in human object manipulation, where it strongly correlates with motion planning. In this study, we propose a simple yet robust task decomposition method based on gaze transitions. We hypothesize that an imitation agent's gaze control, fixating on specific landmarks and transitioning between them, naturally segments demonstrated manipulations into sub-tasks. Notably, our method achieves consistent task decomposition across all demonstrations, which is desirable in contexts such as machine learning. Using teleoperation, a common modality in imitation learning for robotic manipulation, we collected demonstration data for various tasks, applied our segmentation method, and evaluated the characteristics and consistency of the resulting sub-tasks. Furthermore, through extensive testing across a wide range of hyperparameter variations, we demonstrated that the proposed method possesses the robustness necessary for application to different robotic systems.
Abstract:In the field of robotic manipulation, deep imitation learning is recognized as a promising approach for acquiring manipulation skills. Additionally, learning from diverse robot datasets is considered a viable method to achieve versatility and adaptability. In such research, by learning various tasks, robots achieved generality across multiple objects. However, such multi-task robot datasets have mainly focused on single-arm tasks that are relatively imprecise, not addressing the fine-grained object manipulation that robots are expected to perform in the real world. This paper introduces a dataset of diverse object manipulations that includes dual-arm tasks and/or tasks requiring fine manipulation. To this end, we have generated dataset with 224k episodes (150 hours, 1,104 language instructions) which includes dual-arm fine tasks such as bowl-moving, pencil-case opening or banana-peeling, and this data is publicly available. Additionally, this dataset includes visual attention signals as well as dual-action labels, a signal that separates actions into a robust reaching trajectory and precise interaction with objects, and language instructions to achieve robust and precise object manipulation. We applied the dataset to our Dual-Action and Attention (DAA), a model designed for fine-grained dual arm manipulation tasks and robust against covariate shifts. The model was tested with over 7k total trials in real robot manipulation tasks, demonstrating its capability in fine manipulation. The dataset is available at https://sites.google.com/view/multi-task-fine.
Abstract:Multi-object representation learning aims to represent complex real-world visual input using the composition of multiple objects. Representation learning methods have often used unsupervised learning to segment an input image into individual objects and encode these objects into each latent vector. However, it is not clear how previous methods have achieved the appropriate segmentation of individual objects. Additionally, most of the previous methods regularize the latent vectors using a Variational Autoencoder (VAE). Therefore, it is not clear whether VAE regularization contributes to appropriate object segmentation. To elucidate the mechanism of object segmentation in multi-object representation learning, we conducted an ablation study on MONet, which is a typical method. MONet represents multiple objects using pairs that consist of an attention mask and the latent vector corresponding to the attention mask. Each latent vector is encoded from the input image and attention mask. Then, the component image and attention mask are decoded from each latent vector. The loss function of MONet consists of 1) the sum of reconstruction losses between the input image and decoded component image, 2) the VAE regularization loss of the latent vector, and 3) the reconstruction loss of the attention mask to explicitly encode shape information. We conducted an ablation study on these three loss functions to investigate the effect on segmentation performance. Our results showed that the VAE regularization loss did not affect segmentation performance and the others losses did affect it. Based on this result, we hypothesize that it is important to maximize the attention mask of the image region best represented by a single latent vector corresponding to the attention mask. We confirmed this hypothesis by evaluating a new loss function with the same mechanism as the hypothesis.
Abstract:The mind-brain problem is to bridge relations between in higher mental events and in lower neural events. To address this, some mathematical models have been proposed to explain how the brain can represent the discriminative structure of qualia, but they remain unresolved due to a lack of validation methods. To understand the qualia discrimination mechanism, we need to ask how the brain autonomously develops such a mathematical structure using the constructive approach. Here we show that a brain model that learns to satisfy an algebraic independence between neural networks separates metric spaces corresponding to qualia types. We formulate the algebraic independence to link it to the other-qualia-type invariant transformation, a familiar formulation of the permanence of perception. The learning of algebraic independence proposed here explains downward causation, i.e. the macro-level relationship has the causal power over its components, because algebra is the macro-level relationship that is irreducible to a law of neurons, and a self-evaluation of algebra is used to control neurons. The downward causation is required to explain a causal role of mental events on neural events, suggesting that learning algebraic structure between neural networks can contribute to the further development of a mathematical theory of consciousness.
Abstract:A long-horizon dexterous robot manipulation task of deformable objects, such as banana peeling, is problematic because of difficulties in object modeling and a lack of knowledge about stable and dexterous manipulation skills. This paper presents a goal-conditioned dual-action deep imitation learning (DIL) which can learn dexterous manipulation skills using human demonstration data. Previous DIL methods map the current sensory input and reactive action, which easily fails because of compounding errors in imitation learning caused by recurrent computation of actions. The proposed method predicts reactive action when the precise manipulation of the target object is required (local action) and generates the entire trajectory when the precise manipulation is not required. This dual-action formulation effectively prevents compounding error with the trajectory-based global action while respond to unexpected changes in the target object with the reactive local action. Furthermore, in this formulation, both global/local actions are conditioned by a goal state which is defined as the last step of each subtask, for robust policy prediction. The proposed method was tested in the real dual-arm robot and successfully accomplished the banana peeling task.
Abstract:Deep imitation learning is a promising method for dexterous robot manipulation because it only requires demonstration samples for learning manipulation skills. In this paper, deep imitation learning is applied to tasks that require force feedback, such as bottle opening. However, simple visual feedback systems, such as teleoperation, cannot be applied because they do not provide force feedback to operators. Bilateral teleoperation has been used for demonstration with force feedback; however, this requires an expensive and complex bilateral robot system. In this paper, a new master-to-robot (M2R) transfer learning system is presented that does not require robots but can still teach dexterous force feedback-based manipulation tasks to robots. The human directly demonstrates a task using a low-cost controller that resembles the kinematic parameters of the robot arm. Using this controller, the operator can naturally feel the force feedback without any expensive bilateral system. Furthermore, the M2R transfer system can overcome domain gaps between the master and robot using the gaze-based imitation learning framework and a simple calibration method. To demonstrate this, the proposed system was evaluated on a bottle-cap-opening task that requires force feedback only for the master demonstration.
Abstract:Deep imitation learning is a promising approach that does not require hard-coded control rules in autonomous robot manipulation. The current applications of deep imitation learning to robot manipulation have been limited to reactive control based on the states at the current time step. However, future robots will also be required to solve tasks utilizing their memory obtained by experience in complicated environments (e.g., when the robot is asked to find a previously used object on a shelf). In such a situation, simple deep imitation learning may fail because of distractions caused by complicated environments. We propose that gaze prediction from sequential visual input enables the robot to perform a manipulation task that requires memory. The proposed algorithm uses a Transformer-based self-attention architecture for the gaze estimation based on sequential data to implement memory. The proposed method was evaluated with a real robot multi-object manipulation task that requires memory of the previous states.
Abstract:A robotic hand design suitable for dexterity should be examined using functional tests. To achieve this, we designed a mechanical glove, which is a rigid wearable glove that enables us to develop the corresponding isomorphic robotic hand and evaluate its hardware properties. Subsequently, the effectiveness of multiple degrees-of-freedom (DOFs) was evaluated by human participants. Several fine motor skills were evaluated using the mechanical glove under two conditions: one- and three-DOF conditions. To the best of our knowledge, this is the first extensive evaluation method for robotic hand designs suitable for dexterity. (This paper was peer-reviewed and is the full translation from the Journal of the Robotics Society of Japan, Vol.39, No.6, pp.557-560, 2021.)