Abstract:Federated learning (FL) has been widely adopted across various applications, such as healthcare, finance, and smart cities. However, as experimental scenarios become more complex, existing FL frameworks and benchmarks have struggled to keep pace. This paper introduces FedModule, a flexible and extensible FL experimental framework that has been open-sourced to support diverse FL paradigms and provide comprehensive benchmarks for complex experimental scenarios. FedModule adheres to the "one code, all scenarios" principle and employs a modular design that breaks the FL process into individual components, allowing for the seamless integration of different FL paradigms. The framework supports synchronous, asynchronous, and personalized federated learning, with over 20 implemented algorithms. Experiments conducted on public datasets demonstrate the flexibility and extensibility of FedModule. The framework offers multiple execution modes-including linear, threaded, process-based, and distributed-enabling users to tailor their setups to various experimental needs. Additionally, FedModule provides extensive logging and testing capabilities, which facilitate detailed performance analysis of FL algorithms. Comparative evaluations against existing FL toolkits, such as TensorFlow Federated, PySyft, Flower, and FLGo, highlight FedModule's superior scalability, flexibility, and comprehensive benchmark support. By addressing the limitations of current FL frameworks, FedModule marks a significant advancement in FL experimentation, providing researchers and practitioners with a robust tool for developing and evaluating FL algorithms across a wide range of scenarios.
Abstract:Potential crowd flow prediction for new planned transportation sites is a fundamental task for urban planners and administrators. Intuitively, the potential crowd flow of the new coming site can be implied by exploring the nearby sites. However, the transportation modes of nearby sites (e.g. bus stations, bicycle stations) might be different from the target site (e.g. subway station), which results in severe data scarcity issues. To this end, we propose a data driven approach, named MOHER, to predict the potential crowd flow in a certain mode for a new planned site. Specifically, we first identify the neighbor regions of the target site by examining the geographical proximity as well as the urban function similarity. Then, to aggregate these heterogeneous relations, we devise a cross-mode relational GCN, a novel relation-specific transformation model, which can learn not only the correlations but also the differences between different transportation modes. Afterward, we design an aggregator for inductive potential flow representation. Finally, an LTSM module is used for sequential flow prediction. Extensive experiments on real-world data sets demonstrate the superiority of the MOHER framework compared with the state-of-the-art algorithms.
Abstract:Unlike the traditional dock-based systems, dockless bike-sharing systems are more convenient for users in terms of flexibility. However, the flexibility of these dockless systems comes at the cost of management and operation complexity. Indeed, the imbalanced and dynamic use of bikes leads to mandatory rebalancing operations, which impose a critical need for effective bike traffic flow prediction. While efforts have been made in developing traffic flow prediction models, existing approaches lack interpretability, and thus have limited value in practical deployment. To this end, we propose an Interpretable Bike Flow Prediction (IBFP) framework, which can provide effective bike flow prediction with interpretable traffic patterns. Specifically, by dividing the urban area into regions according to flow density, we first model the spatio-temporal bike flows between regions with graph regularized sparse representation, where graph Laplacian is used as a smooth operator to preserve the commonalities of the periodic data structure. Then, we extract traffic patterns from bike flows using subspace clustering with sparse representation to construct interpretable base matrices. Moreover, the bike flows can be predicted with the interpretable base matrices and learned parameters. Finally, experimental results on real-world data show the advantages of the IBFP method for flow prediction in dockless bike sharing systems. In addition, the interpretability of our flow pattern exploitation is further illustrated through a case study where IBFP provides valuable insights into bike flow analysis.
Abstract:Recently, the research of wireless sensing has achieved more intelligent results, and the intelligent sensing of human location and activity can be realized by means of WiFi devices. However, most of the current human environment perception work is limited to a single person's environment, because the environment in which multiple people exist is more complicated than the environment in which a single person exists. In order to solve the problem of human behavior perception in a multi-human environment, we first proposed a solution to achieve crowd counting (inferred population) using deep learning in a closed environment with WIFI signals - DeepCout, which is the first in a multi-human environment. step. Since the use of WiFi to directly count the crowd is too complicated, we use deep learning to solve this problem, use Convolutional Neural Network(CNN) to automatically extract the relationship between the number of people and the channel, and use Long Short Term Memory(LSTM) to resolve the dependencies of number of people and Channel State Information(CSI) . To overcome the massive labelled data required by deep learning method, we add an online learning mechanism to determine whether or not someone is entering/leaving the room by activity recognition model, so as to correct the deep learning model in the fine-tune stage, which, in turn, reduces the required training data and make our method evolving over time. The system of DeepCount is performed and evaluated on the commercial WiFi devices. By massive training samples, our end-to-end learning approach can achieve an average of 86.4% prediction accuracy in an environment of up to 5 people. Meanwhile, by the amendment mechanism of the activity recognition model to judge door switch to get the variance of crowd to amend deep learning predicted results, the accuracy is up to 90%.