Abstract:In classification problems, the datasets are usually imbalanced, noisy or complex. Most sampling algorithms only make some improvements to the linear sampling mechanism of the synthetic minority oversampling technique (SMOTE). Nevertheless, linear oversampling has several unavoidable drawbacks. Linear oversampling is susceptible to overfitting, and the synthetic samples lack diversity and rarely account for the original distribution characteristics. An informed nonlinear oversampling framework with the granular ball (INGB) as a new direction of oversampling is proposed in this paper. It uses granular balls to simulate the spatial distribution characteristics of datasets, and informed entropy is utilized to further optimize the granular-ball space. Then, nonlinear oversampling is performed by following high-dimensional sparsity and the isotropic Gaussian distribution. Furthermore, INGB has good compatibility. Not only can it be combined with most SMOTE-based sampling algorithms to improve their performance, but it can also be easily extended to noisy imbalanced multi-classification problems. The mathematical model and theoretical proof of INGB are given in this work. Extensive experiments demonstrate that INGB outperforms the traditional linear sampling frameworks and algorithms in oversampling on complex datasets.
Abstract:Inferring missing links or detecting spurious ones based on observed graphs, known as link prediction, is a long-standing challenge in graph data analysis. With the recent advances in deep learning, graph neural networks have been used for link prediction and have achieved state-of-the-art performance. Nevertheless, existing methods developed for this purpose are typically discriminative, computing features of local subgraphs around two neighboring nodes and predicting potential links between them from the perspective of subgraph classification. In this formalism, the selection of enclosing subgraphs and heuristic structural features for subgraph classification significantly affects the performance of the methods. To overcome this limitation, this paper proposes a novel and radically different link prediction algorithm based on the network reconstruction theory, called GraphLP. Instead of sampling positive and negative links and heuristically computing the features of their enclosing subgraphs, GraphLP utilizes the feature learning ability of deep-learning models to automatically extract the structural patterns of graphs for link prediction under the assumption that real-world graphs are not locally isolated. Moreover, GraphLP explores high-order connectivity patterns to utilize the hierarchical organizational structures of graphs for link prediction. Our experimental results on all common benchmark datasets from different applications demonstrate that the proposed method consistently outperforms other state-of-the-art methods. Unlike the discriminative neural network models used for link prediction, GraphLP is generative, which provides a new paradigm for neural-network-based link prediction.