Abstract:With the rapid advancements in Large Language Models (LLMs), LLM-based agents have introduced convenient and user-friendly methods for leveraging tools across various domains. In the field of astronomical observation, the construction of new telescopes has significantly increased astronomers' workload. Deploying LLM-powered agents can effectively alleviate this burden and reduce the costs associated with training personnel. Within the Nearby Galaxy Supernovae Survey (NGSS) project, which encompasses eight telescopes across three observation sites, aiming to find the transients from the galaxies in 50 mpc, we have developed the \textbf{StarWhisper Telescope System} to manage the entire observation process. This system automates tasks such as generating observation lists, conducting observations, analyzing data, and providing feedback to the observer. Observation lists are customized for different sites and strategies to ensure comprehensive coverage of celestial objects. After manual verification, these lists are uploaded to the telescopes via the agents in the system, which initiates observations upon neutral language. The observed images are analyzed in real-time, and the transients are promptly communicated to the observer. The agent modifies them into a real-time follow-up observation proposal and send to the Xinglong observatory group chat, then add them to the next-day observation lists. Additionally, the integration of AI agents within the system provides online accessibility, saving astronomers' time and encouraging greater participation from amateur astronomers in the NGSS project.
Abstract:Coded Aperture Snapshot Spectral Imaging (CASSI) system has great advantages over traditional methods in dynamically acquiring Hyper-Spectral Image (HSI), but there are the following problems. 1) Traditional mask relies on random patterns or analytical design, both of which limit the performance improvement of CASSI. 2) Existing high-quality reconstruction algorithms are slow in reconstruction and can only reconstruct scene information offline. To address the above two problems, this paper designs the AMDC-CASSI system, introducing RGB camera with CASSI based on Adaptive-Mask as multimodal input to improve the reconstruction quality. The existing SOTA reconstruction schemes are based on transformer, but the operation of self-attention pulls down the operation efficiency of the network. In order to improve the inference speed of the reconstruction network, this paper proposes An MLP Architecture for Adaptive-Mask-based Dual-Camera (MLP-AMDC) to replace the transformer structure of the network. Numerous experiments have shown that MLP performs no less well than transformer-based structures for HSI reconstruction, while MLP greatly improves the network inference speed and has less number of parameters and operations, our method has a 8 db improvement over SOTA and at least a 5-fold improvement in reconstruction speed. (https://github.com/caizeyu1992/MLP-AMDC.)