https://github.com/caizeyu1992/MLP-AMDC.)
Coded Aperture Snapshot Spectral Imaging (CASSI) system has great advantages over traditional methods in dynamically acquiring Hyper-Spectral Image (HSI), but there are the following problems. 1) Traditional mask relies on random patterns or analytical design, both of which limit the performance improvement of CASSI. 2) Existing high-quality reconstruction algorithms are slow in reconstruction and can only reconstruct scene information offline. To address the above two problems, this paper designs the AMDC-CASSI system, introducing RGB camera with CASSI based on Adaptive-Mask as multimodal input to improve the reconstruction quality. The existing SOTA reconstruction schemes are based on transformer, but the operation of self-attention pulls down the operation efficiency of the network. In order to improve the inference speed of the reconstruction network, this paper proposes An MLP Architecture for Adaptive-Mask-based Dual-Camera (MLP-AMDC) to replace the transformer structure of the network. Numerous experiments have shown that MLP performs no less well than transformer-based structures for HSI reconstruction, while MLP greatly improves the network inference speed and has less number of parameters and operations, our method has a 8 db improvement over SOTA and at least a 5-fold improvement in reconstruction speed. (