Abstract:This paper presents a novel framework for continual feature selection (CFS) in data preprocessing, particularly in the context of an open and dynamic environment where unknown classes may emerge. CFS encounters two primary challenges: the discovery of unknown knowledge and the transfer of known knowledge. To this end, the proposed CFS method combines the strengths of continual learning (CL) with granular-ball computing (GBC), which focuses on constructing a granular-ball knowledge base to detect unknown classes and facilitate the transfer of previously learned knowledge for further feature selection. CFS consists of two stages: initial learning and open learning. The former aims to establish an initial knowledge base through multi-granularity representation using granular-balls. The latter utilizes prior granular-ball knowledge to identify unknowns, updates the knowledge base for granular-ball knowledge transfer, reinforces old knowledge, and integrates new knowledge. Subsequently, we devise an optimal feature subset mechanism that incorporates minimal new features into the existing optimal subset, often yielding superior results during each period. Extensive experimental results on public benchmark datasets demonstrate our method's superiority in terms of both effectiveness and efficiency compared to state-of-the-art feature selection methods.
Abstract:Multi-instance learning (MIL) is a great paradigm for dealing with complex data and has achieved impressive achievements in a number of fields, including image classification, video anomaly detection, and far more. Each data sample is referred to as a bag containing several unlabeled instances, and the supervised information is only provided at the bag-level. The safety of MIL learners is concerning, though, as we can greatly fool them by introducing a few adversarial perturbations. This can be fatal in some cases, such as when users are unable to access desired images and criminals are attempting to trick surveillance cameras. In this paper, we design two adversarial perturbations to interpret the vulnerability of MIL methods. The first method can efficiently generate the bag-specific perturbation (called customized) with the aim of outsiding it from its original classification region. The second method builds on the first one by investigating the image-agnostic perturbation (called universal) that aims to affect all bags in a given data set and obtains some generalizability. We conduct various experiments to verify the performance of these two perturbations, and the results show that both of them can effectively fool MIL learners. We additionally propose a simple strategy to lessen the effects of adversarial perturbations. Source codes are available at https://github.com/InkiInki/MI-UAP.