Abstract:In the past years, learned image compression (LIC) has achieved remarkable performance. The recent LIC methods outperform VVC in both PSNR and MS-SSIM. However, the low bit-rate reconstructions of LIC suffer from artifacts such as blurring, color drifting and texture missing. Moreover, those varied artifacts make image quality metrics correlate badly with human perceptual quality. In this paper, we propose PO-ELIC, i.e., Perception-Oriented Efficient Learned Image Coding. To be specific, we adapt ELIC, one of the state-of-the-art LIC models, with adversarial training techniques. We apply a mixture of losses including hinge-form adversarial loss, Charbonnier loss, and style loss, to finetune the model towards better perceptual quality. Experimental results demonstrate that our method achieves comparable perceptual quality with HiFiC with much lower bitrate.
Abstract:JPEG is a popular image compression method widely used by individuals, data center, cloud storage and network filesystems. However, most recent progress on image compression mainly focuses on uncompressed images while ignoring trillions of already-existing JPEG images. To compress these JPEG images adequately and restore them back to JPEG format losslessly when needed, we propose a deep learning based JPEG recompression method that operates on DCT domain and propose a Multi-Level Cross-Channel Entropy Model to compress the most informative Y component. Experiments show that our method achieves state-of-the-art performance compared with traditional JPEG recompression methods including Lepton, JPEG XL and CMIX. To the best of our knowledge, this is the first learned compression method that losslessly transcodes JPEG images to more storage-saving bitstreams.