Abstract:Data-driven genetic programming (GP) has proven highly effective in solving combinatorial optimization problems under dynamic and uncertain environments. A central challenge lies in fast fitness evaluations on large training datasets, especially for complex real-world problems involving time-consuming simulations. Surrogate models, like phenotypic characterization (PC)-based K-nearest neighbors (KNN), have been applied to reduce computational cost. However, the PC-based similarity measure is confined to behavioral characteristics, overlooking genotypic differences, which can limit surrogate quality and impair performance. To address these issues, this paper proposes a pheno-geno unified surrogate GP algorithm, PGU-SGP, integrating phenotypic and genotypic characterization (GC) to enhance surrogate sample selection and fitness prediction. A novel unified similarity metric combining PC and GC distances is proposed, along with an effective and efficient GC representation. Experimental results of a real-life vehicle scheduling problem demonstrate that PGU-SGP reduces training time by approximately 76% while achieving comparable performance to traditional GP. With the same training time, PGU-SGP significantly outperforms traditional GP and the state-of-the-art algorithm on most datasets. Additionally, PGU-SGP shows faster convergence and improved surrogate quality by maintaining accurate fitness rankings and appropriate selection pressure, further validating its effectiveness.
Abstract:Since language models (LMs) now outperform average humans on many challenging tasks, it has become increasingly difficult to develop challenging, high-quality, and realistic evaluations. We address this issue by examining LMs' capabilities to generate code for solving real scientific research problems. Incorporating input from scientists and AI researchers in 16 diverse natural science sub-fields, including mathematics, physics, chemistry, biology, and materials science, we created a scientist-curated coding benchmark, SciCode. The problems in SciCode naturally factorize into multiple subproblems, each involving knowledge recall, reasoning, and code synthesis. In total, SciCode contains 338 subproblems decomposed from 80 challenging main problems. It offers optional descriptions specifying useful scientific background information and scientist-annotated gold-standard solutions and test cases for evaluation. Claude3.5-Sonnet, the best-performing model among those tested, can solve only 4.6% of the problems in the most realistic setting. We believe that SciCode demonstrates both contemporary LMs' progress towards becoming helpful scientific assistants and sheds light on the development and evaluation of scientific AI in the future.
Abstract:The Vehicle Routing Problem (VRP) is one of the most intensively studied combinatorial optimisation problems for which numerous models and algorithms have been proposed. To tackle the complexities, uncertainties and dynamics involved in real-world VRP applications, Machine Learning (ML) methods have been used in combination with analytical approaches to enhance problem formulations and algorithmic performance across different problem solving scenarios. However, the relevant papers are scattered in several traditional research fields with very different, sometimes confusing, terminologies. This paper presents a first, comprehensive review of hybrid methods that combine analytical techniques with ML tools in addressing VRP problems. Specifically, we review the emerging research streams on ML-assisted VRP modelling and ML-assisted VRP optimisation. We conclude that ML can be beneficial in enhancing VRP modelling, and improving the performance of algorithms for both online and offline VRP optimisations. Finally, challenges and future opportunities of VRP research are discussed.