Abstract:Realtime 4D reconstruction for dynamic scenes remains a crucial challenge for autonomous driving perception. Most existing methods rely on depth estimation through self-supervision or multi-modality sensor fusion. In this paper, we propose Driv3R, a DUSt3R-based framework that directly regresses per-frame point maps from multi-view image sequences. To achieve streaming dense reconstruction, we maintain a memory pool to reason both spatial relationships across sensors and dynamic temporal contexts to enhance multi-view 3D consistency and temporal integration. Furthermore, we employ a 4D flow predictor to identify moving objects within the scene to direct our network focus more on reconstructing these dynamic regions. Finally, we align all per-frame pointmaps consistently to the world coordinate system in an optimization-free manner. We conduct extensive experiments on the large-scale nuScenes dataset to evaluate the effectiveness of our method. Driv3R outperforms previous frameworks in 4D dynamic scene reconstruction, achieving 15x faster inference speed compared to methods requiring global alignment. Code: https://github.com/Barrybarry-Smith/Driv3R.
Abstract:We propose PixelGaussian, an efficient feed-forward framework for learning generalizable 3D Gaussian reconstruction from arbitrary views. Most existing methods rely on uniform pixel-wise Gaussian representations, which learn a fixed number of 3D Gaussians for each view and cannot generalize well to more input views. Differently, our PixelGaussian dynamically adapts both the Gaussian distribution and quantity based on geometric complexity, leading to more efficient representations and significant improvements in reconstruction quality. Specifically, we introduce a Cascade Gaussian Adapter to adjust Gaussian distribution according to local geometry complexity identified by a keypoint scorer. CGA leverages deformable attention in context-aware hypernetworks to guide Gaussian pruning and splitting, ensuring accurate representation in complex regions while reducing redundancy. Furthermore, we design a transformer-based Iterative Gaussian Refiner module that refines Gaussian representations through direct image-Gaussian interactions. Our PixelGaussian can effectively reduce Gaussian redundancy as input views increase. We conduct extensive experiments on the large-scale ACID and RealEstate10K datasets, where our method achieves state-of-the-art performance with good generalization to various numbers of views. Code: https://github.com/Barrybarry-Smith/PixelGaussian.
Abstract:Point clouds captured by different sensors such as RGB-D cameras and LiDAR possess non-negligible domain gaps. Most existing methods design different network architectures and train separately on point clouds from various sensors. Typically, point-based methods achieve outstanding performances on even-distributed dense point clouds from RGB-D cameras, while voxel-based methods are more efficient for large-range sparse LiDAR point clouds. In this paper, we propose geometry-to-voxel auxiliary learning to enable voxel representations to access point-level geometric information, which supports better generalisation of the voxel-based backbone with additional interpretations of multi-sensor point clouds. Specifically, we construct hierarchical geometry pools generated by a voxel-guided dynamic point network, which efficiently provide auxiliary fine-grained geometric information adapted to different stages of voxel features. We conduct experiments on joint multi-sensor datasets to demonstrate the effectiveness of GeoAuxNet. Enjoying elaborate geometric information, our method outperforms other models collectively trained on multi-sensor datasets, and achieve competitive results with the-state-of-art experts on each single dataset.