Abstract:Achieving fine-grained controllability in human image synthesis is a long-standing challenge in computer vision. Existing methods primarily focus on either facial synthesis or near-frontal body generation, with limited ability to simultaneously control key factors such as viewpoint, pose, clothing, and identity in a disentangled manner. In this paper, we introduce a new disentangled and controllable human synthesis task, which explicitly separates and manipulates these four factors within a unified framework. We first develop an end-to-end generative model trained on MVHumanNet for factor disentanglement. However, the domain gap between MVHumanNet and in-the-wild data produce unsatisfacotry results, motivating the exploration of virtual try-on (VTON) dataset as a potential solution. Through experiments, we observe that simply incorporating the VTON dataset as additional data to train the end-to-end model degrades performance, primarily due to the inconsistency in data forms between the two datasets, which disrupts the disentanglement process. To better leverage both datasets, we propose a stage-by-stage framework that decomposes human image generation into three sequential steps: clothed A-pose generation, back-view synthesis, and pose and view control. This structured pipeline enables better dataset utilization at different stages, significantly improving controllability and generalization, especially for in-the-wild scenarios. Extensive experiments demonstrate that our stage-by-stage approach outperforms end-to-end models in both visual fidelity and disentanglement quality, offering a scalable solution for real-world tasks. Additional demos are available on the project page: https://taited.github.io/discohuman-project/.
Abstract:As for human avatar reconstruction, contemporary techniques commonly necessitate the acquisition of costly data and struggle to achieve satisfactory results from a small number of casual images. In this paper, we investigate this task from a few-shot unconstrained photo album. The reconstruction of human avatars from such data sources is challenging because of limited data amount and dynamic articulated poses. For handling dynamic data, we integrate a skinning mechanism with deep marching tetrahedra (DMTet) to form a drivable tetrahedral representation, which drives arbitrary mesh topologies generated by the DMTet for the adaptation of unconstrained images. To effectively mine instructive information from few-shot data, we devise a two-phase optimization method with few-shot reference and few-shot guidance. The former focuses on aligning avatar identity with reference images, while the latter aims to generate plausible appearances for unseen regions. Overall, our framework, called HaveFun, can undertake avatar reconstruction, rendering, and animation. Extensive experiments on our developed benchmarks demonstrate that HaveFun exhibits substantially superior performance in reconstructing the human body and hand. Project website: https://seanchenxy.github.io/HaveFunWeb/.