Abstract:In this paper, we introduce PoseCrafter, a one-shot method for personalized video generation following the control of flexible poses. Built upon Stable Diffusion and ControlNet, we carefully design an inference process to produce high-quality videos without the corresponding ground-truth frames. First, we select an appropriate reference frame from the training video and invert it to initialize all latent variables for generation. Then, we insert the corresponding training pose into the target pose sequences to enhance faithfulness through a trained temporal attention module. Furthermore, to alleviate the face and hand degradation resulting from discrepancies between poses of training videos and inference poses, we implement simple latent editing through an affine transformation matrix involving facial and hand landmarks. Extensive experiments on several datasets demonstrate that PoseCrafter achieves superior results to baselines pre-trained on a vast collection of videos under 8 commonly used metrics. Besides, PoseCrafter can follow poses from different individuals or artificial edits and simultaneously retain the human identity in an open-domain training video.
Abstract:Data augmentation has been proved effective in training deep models. Existing data augmentation methods tackle the fine-grained problem by blending image pairs and fusing corresponding labels according to the statistics of mixed pixels, which produces additional noise harmful to the performance of networks. Motivated by this, we present a simple yet effective cross ensemble knowledge distillation (CEKD) model for fine-grained feature learning. We innovatively propose a cross distillation module to provide additional supervision to alleviate the noise problem, and propose a collaborative ensemble module to overcome the target conflict problem. The proposed model can be trained in an end-to-end manner, and only requires image-level label supervision. Extensive experiments on widely used fine-grained benchmarks demonstrate the effectiveness of our proposed model. Specifically, with the backbone of ResNet-101, CEKD obtains the accuracy of 89.59%, 95.96% and 94.56% in three datasets respectively, outperforming state-of-the-art API-Net by 0.99%, 1.06% and 1.16%.