Abstract:Mean field games (MFGs) describe the collective behavior of large populations of interacting agents. In this work, we tackle ill-posed inverse problems in potential MFGs, aiming to recover the agents' population, momentum, and environmental setup from limited, noisy measurements and partial observations. These problems are ill-posed because multiple MFG configurations can explain the same data, or different parameters can yield nearly identical observations. Nonetheless, they remain crucial in practice for real-world scenarios where data are inherently sparse or noisy, or where the MFG structure is not fully determined. Our focus is on finding surrogate MFGs that accurately reproduce the observed data despite these challenges. We propose two Gaussian process (GP)-based frameworks: an inf-sup formulation and a bilevel approach. The choice between them depends on whether the unknown parameters introduce concavity in the objective. In the inf-sup framework, we use the linearity of GPs and their parameterization structure to maintain convex-concave properties, allowing us to apply standard convex optimization algorithms. In the bilevel framework, we employ a gradient-descent-based algorithm and introduce two methods for computing the outer gradient. The first method leverages an existing solver for the inner potential MFG and applies automatic differentiation, while the second adopts an adjoint-based strategy that computes the outer gradient independently of the inner solver. Our numerical experiments show that when sufficient prior information is available, the unknown parameters can be accurately recovered. Otherwise, if prior information is limited, the inverse problem is ill-posed, but our frameworks can still produce surrogate MFG models that closely match observed data.
Abstract:We consider the use of Gaussian Processes (GPs) or Neural Networks (NNs) to numerically approximate the solutions to nonlinear partial differential equations (PDEs) with rough forcing or source terms, which commonly arise as pathwise solutions to stochastic PDEs. Kernel methods have recently been generalized to solve nonlinear PDEs by approximating their solutions as the maximum a posteriori estimator of GPs that are conditioned to satisfy the PDE at a finite set of collocation points. The convergence and error guarantees of these methods, however, rely on the PDE being defined in a classical sense and its solution possessing sufficient regularity to belong to the associated reproducing kernel Hilbert space. We propose a generalization of these methods to handle roughly forced nonlinear PDEs while preserving convergence guarantees with an oversmoothing GP kernel that is misspecified relative to the true solution's regularity. This is achieved by conditioning a regular GP to satisfy the PDE with a modified source term in a weak sense (when integrated against a finite number of test functions). This is equivalent to replacing the empirical $L^2$-loss on the PDE constraint by an empirical negative-Sobolev norm. We further show that this loss function can be used to extend physics-informed neural networks (PINNs) to stochastic equations, thereby resulting in a new NN-based variant termed Negative Sobolev Norm-PINN (NeS-PINN).
Abstract:This paper presents a Gaussian Process (GP) framework, a non-parametric technique widely acknowledged for regression and classification tasks, to address inverse problems in mean field games (MFGs). By leveraging GPs, we aim to recover agents' strategic actions and the environment's configurations from partial and noisy observations of the population of agents and the setup of the environment. Our method is a probabilistic tool to infer the behaviors of agents in MFGs from data in scenarios where the comprehensive dataset is either inaccessible or contaminated by noises.
Abstract:Most scientific challenges can be framed into one of the following three levels of complexity of function approximation. Type 1: Approximate an unknown function given input/output data. Type 2: Consider a collection of variables and functions, some of which are unknown, indexed by the nodes and hyperedges of a hypergraph (a generalized graph where edges can connect more than two vertices). Given partial observations of the variables of the hypergraph (satisfying the functional dependencies imposed by its structure), approximate all the unobserved variables and unknown functions. Type 3: Expanding on Type 2, if the hypergraph structure itself is unknown, use partial observations of the variables of the hypergraph to discover its structure and approximate its unknown functions. While most Computational Science and Engineering and Scientific Machine Learning challenges can be framed as Type 1 and Type 2 problems, many scientific problems can only be categorized as Type 3. Despite their prevalence, these Type 3 challenges have been largely overlooked due to their inherent complexity. Although Gaussian Process (GP) methods are sometimes perceived as well-founded but old technology limited to Type 1 curve fitting, their scope has recently been expanded to Type 2 problems. In this paper, we introduce an interpretable GP framework for Type 3 problems, targeting the data-driven discovery and completion of computational hypergraphs. Our approach is based on a kernel generalization of Row Echelon Form reduction from linear systems to nonlinear ones and variance-based analysis. Here, variables are linked via GPs and those contributing to the highest data variance unveil the hypergraph's structure. We illustrate the scope and efficiency of the proposed approach with applications to (algebraic) equation discovery, network discovery (gene pathways, chemical, and mechanical) and raw data analysis.