Abstract:Nasopharyngeal carcinoma (NPC) patients often undergo radiotherapy and chemotherapy, which can lead to postoperative complications such as limited mouth opening and joint stiffness, particularly in recurrent cases that require re-surgery. These complications can affect airway function, making accurate postoperative airway risk assessment essential for managing patient care. Accurate segmentation of airway-related structures in postoperative CT scans is crucial for assessing these risks. This study introduces TopoWMamba (Topology-aware Wavelet Mamba), a novel segmentation model specifically designed to address the challenges of postoperative airway risk evaluation in recurrent NPC patients. TopoWMamba combines wavelet-based multi-scale feature extraction, state-space sequence modeling, and topology-aware modules to segment airway-related structures in CT scans robustly. By leveraging the Wavelet-based Mamba Block (WMB) for hierarchical frequency decomposition and the Snake Conv VSS (SCVSS) module to preserve anatomical continuity, TopoWMamba effectively captures both fine-grained boundaries and global structural context, crucial for accurate segmentation in complex postoperative scenarios. Through extensive testing on the NPCSegCT dataset, TopoWMamba achieves an average Dice score of 88.02%, outperforming existing models such as UNet, Attention UNet, and SwinUNet. Additionally, TopoWMamba is tested on the SegRap 2023 Challenge dataset, where it shows a significant improvement in trachea segmentation with a Dice score of 95.26%. The proposed model provides a strong foundation for automated segmentation, enabling more accurate postoperative airway risk evaluation.
Abstract:The novel active simultaneously transmitting and reflecting surface (ASTARS) has recently received a lot of attention due to its capability to conquer the multiplicative fading loss and achieve full-space smart radio environments. This paper introduces the ASTARS to assist non-orthogonal multiple access (NOMA) communications, where the stochastic geometry theory is used to model the spatial positions of pairing users. We design the independent reflection/transmission phase-shift controllers of ASTARS to align the phases of cascaded channels at pairing users. We derive new closed-form and asymptotic expressions of the outage probability and ergodic data rate for ASTARS-NOMA networks in the presence of perfect/imperfect successive interference cancellation (pSIC). The diversity orders and multiplexing gains for ASTARS-NOMA are derived to provide more insights. Furthermore, the system throughputs of ASTARS-NOMA are investigated in both delay-tolerant and delay-limited transmission modes. The numerical results are presented and show that: 1) ASTARS-NOMA with pSIC outperforms ASTARS assisted-orthogonal multiple access (ASTARS-OMA) in terms of outage probability and ergodic data rate; 2) The outage probability of ASTARS-NOMA can be further reduced within a certain range by increasing the power amplification factors; 3) The system throughputs of ASTARS-NOMA are superior to that of ASTARS-OMA in both delay-limited and delay-tolerant transmission modes.