Abstract:This report presents Wan, a comprehensive and open suite of video foundation models designed to push the boundaries of video generation. Built upon the mainstream diffusion transformer paradigm, Wan achieves significant advancements in generative capabilities through a series of innovations, including our novel VAE, scalable pre-training strategies, large-scale data curation, and automated evaluation metrics. These contributions collectively enhance the model's performance and versatility. Specifically, Wan is characterized by four key features: Leading Performance: The 14B model of Wan, trained on a vast dataset comprising billions of images and videos, demonstrates the scaling laws of video generation with respect to both data and model size. It consistently outperforms the existing open-source models as well as state-of-the-art commercial solutions across multiple internal and external benchmarks, demonstrating a clear and significant performance superiority. Comprehensiveness: Wan offers two capable models, i.e., 1.3B and 14B parameters, for efficiency and effectiveness respectively. It also covers multiple downstream applications, including image-to-video, instruction-guided video editing, and personal video generation, encompassing up to eight tasks. Consumer-Grade Efficiency: The 1.3B model demonstrates exceptional resource efficiency, requiring only 8.19 GB VRAM, making it compatible with a wide range of consumer-grade GPUs. Openness: We open-source the entire series of Wan, including source code and all models, with the goal of fostering the growth of the video generation community. This openness seeks to significantly expand the creative possibilities of video production in the industry and provide academia with high-quality video foundation models. All the code and models are available at https://github.com/Wan-Video/Wan2.1.
Abstract:Graph Neural Networks (GNNs) have shown promising results in various tasks, among which link prediction is an important one. GNN models usually follow a node-centric message passing procedure that aggregates the neighborhood information to the central node recursively. Following this paradigm, features of nodes are passed through edges without caring about where the nodes are located and which role they played. However, the neglected topological information is shown to be valuable for link prediction tasks. In this paper, we propose Structure Enhanced Graph neural network (SEG) for link prediction. SEG introduces the path labeling method to capture surrounding topological information of target nodes and then incorporates the structure into an ordinary GNN model. By jointly training the structure encoder and deep GNN model, SEG fuses topological structures and node features to take full advantage of graph information. Experiments on the OGB link prediction datasets demonstrate that SEG achieves state-of-the-art results among all three public datasets.