Abstract:Accurate and reliable sensor measurements are critical for ensuring the safety and longevity of complex engineering systems such as wind turbines. In this paper, we propose a novel framework for sensor fault detection, isolation, and accommodation (FDIA) using masked models and self-supervised learning. Our proposed approach is a general time series modeling approach that can be applied to any neural network (NN) model capable of sequence modeling, and captures the complex spatio-temporal relationships among different sensors. During training, the proposed masked approach creates a random mask, which acts like a fault, for one or more sensors, making the training and inference task unified: finding the faulty sensors and correcting them. We validate our proposed technique on both a public dataset and a real-world dataset from GE offshore wind turbines, and demonstrate its effectiveness in detecting, diagnosing and correcting sensor faults. The masked model not only simplifies the overall FDIA pipeline, but also outperforms existing approaches. Our proposed technique has the potential to significantly improve the accuracy and reliability of sensor measurements in complex engineering systems in real-time, and could be applied to other types of sensors and engineering systems in the future. We believe that our proposed framework can contribute to the development of more efficient and effective FDIA techniques for a wide range of applications.
Abstract:Given the scarcity of anomalies in real-world applications, the majority of literature has been focusing on modeling normality. The learned representations enable anomaly detection as the normality model is trained to capture certain key underlying data regularities under normal circumstances. In practical settings, particularly industrial time series anomaly detection, we often encounter situations where a large amount of normal operation data is available along with a small number of anomaly events collected over time. This practical situation calls for methodologies to leverage these small number of anomaly events to create a better anomaly detector. In this paper, we introduce two methodologies to address the needs of this practical situation and compared them with recently developed state of the art techniques. Our proposed methods anchor on representative learning of normal operation with autoregressive (AR) model along with loss components to encourage representations that separate normal versus few positive examples. We applied the proposed methods to two industrial anomaly detection datasets and demonstrated effective performance in comparison with approaches from literature. Our study also points out additional challenges with adopting such methods in practical applications.
Abstract:With proliferation of deep learning (DL) applications in diverse domains, vulnerability of DL models to adversarial attacks has become an increasingly interesting research topic in the domains of Computer Vision (CV) and Natural Language Processing (NLP). DL has also been widely adopted to diverse PHM applications, where data are primarily time-series sensor measurements. While those advanced DL algorithms/models have resulted in an improved PHM algorithms' performance, the vulnerability of those PHM algorithms to adversarial attacks has not drawn much attention in the PHM community. In this paper we attempt to explore the vulnerability of PHM algorithms. More specifically, we investigate the strategies of attacking PHM algorithms by considering several unique characteristics associated with time-series sensor measurements data. We use two real-world PHM applications as examples to validate our attack strategies and to demonstrate that PHM algorithms indeed are vulnerable to adversarial attacks.
Abstract:Monitoring gas turbine combustors health, in particular, early detecting abnormal behaviors and incipient faults, is critical in ensuring gas turbines operating efficiently and in preventing costly unplanned maintenance. One popular means of detecting combustor abnormalities is through continuously monitoring exhaust gas temperature profiles. Over the years many anomaly detection technologies have been explored for detecting combustor faults, however, the performance (detection rate) of anomaly detection solutions fielded is still inadequate. Advanced technologies that can improve detection performance are in great need. Aiming for improving anomaly detection performance, in this paper we introduce recently-developed deep learning (DL) in machine learning into the combustors anomaly detection application. Specifically, we use deep learning to hierarchically learn features from the sensor measurements of exhaust gas temperatures. And we then use the learned features as the input to a neural network classifier for performing combustor anomaly detection. Since such deep learned features potentially better capture complex relations among all sensor measurements and the underlying combustor behavior than handcrafted features do, we expect the learned features can lead to a more accurate and robust anomaly detection. Using the data collected from a real-world gas turbine combustion system, we demonstrated that the proposed deep learning based anomaly detection significantly indeed improved combustor anomaly detection performance.
Abstract:Power plant is a complex and nonstationary system for which the traditional machine learning modeling approaches fall short of expectations. The ensemble-based online learning methods provide an effective way to continuously learn from the dynamic environment and autonomously update models to respond to environmental changes. This paper proposes such an online ensemble regression approach to model power plant performance, which is critically important for operation optimization. The experimental results on both simulated and real data show that the proposed method can achieve performance with less than 1% mean average percentage error, which meets the general expectations in field operations.
Abstract:Data-driven predictive analytics are in use today across a number of industrial applications, but further integration is hindered by the requirement of similarity among model training and test data distributions. This paper addresses the need of learning from possibly nonstationary data streams, or under concept drift, a commonly seen phenomenon in practical applications. A simple dual-learner ensemble strategy, alternating learners framework, is proposed. A long-memory model learns stable concepts from a long relevant time window, while a short-memory model learns transient concepts from a small recent window. The difference in prediction performance of these two models is monitored and induces an alternating policy to select, update and reset the two models. The method features an online updating mechanism to maintain the ensemble accuracy, and a concept-dependent trigger to focus on relevant data. Through empirical studies the method demonstrates effective tracking and prediction when the steaming data carry abrupt and/or gradual changes.
Abstract:We propose a simple but strong baseline for time series classification from scratch with deep neural networks. Our proposed baseline models are pure end-to-end without any heavy preprocessing on the raw data or feature crafting. The proposed Fully Convolutional Network (FCN) achieves premium performance to other state-of-the-art approaches and our exploration of the very deep neural networks with the ResNet structure is also competitive. The global average pooling in our convolutional model enables the exploitation of the Class Activation Map (CAM) to find out the contributing region in the raw data for the specific labels. Our models provides a simple choice for the real world application and a good starting point for the future research. An overall analysis is provided to discuss the generalization capability of our models, learned features, network structures and the classification semantics.