Abstract:The accurate prediction of drought probability in specific regions is crucial for informed decision-making in agricultural practices. It is important to make predictions one year in advance, particularly for long-term decisions. However, forecasting this probability presents challenges due to the complex interplay of various factors within the region of interest and neighboring areas. In this study, we propose an end-to-end solution to address this issue based on various spatiotemporal neural networks. The models considered focus on predicting the drought intensity based on the Palmer Drought Severity Index (PDSI) for subregions of interest, leveraging intrinsic factors and insights from climate models to enhance drought predictions. Comparative evaluations demonstrate the superior accuracy of Convolutional LSTM (ConvLSTM) and transformer models compared to baseline gradient boosting and logistic regression solutions. The two former models achieved impressive ROC AUC scores from 0.90 to 0.70 for forecast horizons from one to six months, outperforming baseline models. The transformer showed superiority for shorter horizons, while ConvLSTM did so for longer horizons. Thus, we recommend selecting the models accordingly for long-term drought forecasting. To ensure the broad applicability of the considered models, we conduct extensive validation across regions worldwide, considering different environmental conditions. We also run several ablation and sensitivity studies to challenge our findings and provide additional information on how to solve the problem.
Abstract:Massive samples of event sequences data occur in various domains, including e-commerce, healthcare, and finance. There are two main challenges regarding inference of such data: computational and methodological. The amount of available data and the length of event sequences per client are typically large, thus it requires long-term modelling. Moreover, this data is often sparse and non-uniform, making classic approaches for time series processing inapplicable. Existing solutions include recurrent and transformer architectures in such cases. To allow continuous time, the authors introduce specific parametric intensity functions defined at each moment on top of existing models. Due to the parametric nature, these intensities represent only a limited class of event sequences. We propose the COTIC method based on a continuous convolution neural network suitable for non-uniform occurrence of events in time. In COTIC, dilations and multi-layer architecture efficiently handle dependencies between events. Furthermore, the model provides general intensity dynamics in continuous time - including self-excitement encountered in practice. The COTIC model outperforms existing approaches on majority of the considered datasets, producing embeddings for an event sequence that can be used to solve downstream tasks - e.g. predicting next event type and return time. The code of the proposed method can be found in the GitHub repository (https://github.com/VladislavZh/COTIC).