Abstract:The United Nations has identified improving food security and reducing hunger as essential components of its sustainable development goals. As of 2021, approximately 828 million people worldwide are experiencing hunger and malnutrition, with numerous fatalities reported. Climate change significantly impacts agricultural land suitability, potentially leading to severe food shortages and subsequent social and political conflicts. To address this pressing issue, we have developed a machine learning-based approach to predict the risk of substantial land suitability degradation and changes in irrigation patterns. Our study focuses on Central Eurasia, a region burdened with economic and social challenges. This study represents a pioneering effort in utilizing machine learning methods to assess the impact of climate change on agricultural land suitability under various carbon emissions scenarios. Through comprehensive feature importance analysis, we unveil specific climate and terrain characteristics that exert influence on land suitability. Our approach achieves remarkable accuracy, offering policymakers invaluable insights to facilitate informed decisions aimed at averting a humanitarian crisis, including strategies such as the provision of additional water and fertilizers. This research underscores the tremendous potential of machine learning in addressing global challenges, with a particular emphasis on mitigating hunger and malnutrition.
Abstract:The accurate prediction of drought probability in specific regions is crucial for informed decision-making in agricultural practices. It is important to make predictions one year in advance, particularly for long-term decisions. However, forecasting this probability presents challenges due to the complex interplay of various factors within the region of interest and neighboring areas. In this study, we propose an end-to-end solution to address this issue based on various spatiotemporal neural networks. The models considered focus on predicting the drought intensity based on the Palmer Drought Severity Index (PDSI) for subregions of interest, leveraging intrinsic factors and insights from climate models to enhance drought predictions. Comparative evaluations demonstrate the superior accuracy of Convolutional LSTM (ConvLSTM) and transformer models compared to baseline gradient boosting and logistic regression solutions. The two former models achieved impressive ROC AUC scores from 0.90 to 0.70 for forecast horizons from one to six months, outperforming baseline models. The transformer showed superiority for shorter horizons, while ConvLSTM did so for longer horizons. Thus, we recommend selecting the models accordingly for long-term drought forecasting. To ensure the broad applicability of the considered models, we conduct extensive validation across regions worldwide, considering different environmental conditions. We also run several ablation and sensitivity studies to challenge our findings and provide additional information on how to solve the problem.