Abstract:The capability to learn latent representations plays a key role in the effectiveness of recent machine learning methods. An active frontier in representation learning is understanding representations for combinatorial structures which may not admit well-behaved local neighborhoods or distance functions. For example, for polygons, slightly perturbing vertex locations might lead to significant changes in their combinatorial structure and may even lead to invalid polygons. In this paper, we investigate representations to capture the underlying combinatorial structures of polygons. Specifically, we study the open problem of Visibility Reconstruction: Given a visibility graph G, construct a polygon P whose visibility graph is G. We introduce VisDiff, a novel diffusion-based approach to reconstruct a polygon from its given visibility graph G. Our method first estimates the signed distance function (SDF) of P from G. Afterwards, it extracts ordered vertex locations that have the pairwise visibility relationship given by the edges of G. Our main insight is that going through the SDF significantly improves learning for reconstruction. In order to train VisDiff, we make two main contributions: (1) We design novel loss components for computing the visibility in a differentiable manner and (2) create a carefully curated dataset. We use this dataset to benchmark our method and achieve 21% improvement in F1-Score over standard methods. We also demonstrate effective generalization to out-of-distribution polygon types and show that learning a generative model allows us to sample the set of polygons with a given visibility graph. Finally, we extend our method to the related combinatorial problem of reconstruction from a triangulation. We achieve 95% classification accuracy of triangulation edges and a 4% improvement in Chamfer distance compared to current architectures.
Abstract:We address the problem of stable and robust control of vehicles with lateral error dynamics for the application of lane keeping. Lane departure is the primary reason for half of the fatalities in road accidents, making the development of stable, adaptive and robust controllers a necessity. Traditional linear feedback controllers achieve satisfactory tracking performance, however, they exhibit unstable behavior when uncertainties are induced into the system. Any disturbance or uncertainty introduced to the steering-angle input can be catastrophic for the vehicle. Therefore, controllers must be developed to actively handle such uncertainties. In this work, we introduce a Neural L1 Adaptive controller (Neural-L1) which learns the uncertainties in the lateral error dynamics of a front-steered Ackermann vehicle and guarantees stability and robustness. Our contributions are threefold: i) We extend the theoretical results for guaranteed stability and robustness of conventional L1 Adaptive controllers to Neural-L1; ii) We implement a Neural-L1 for the lane keeping application which learns uncertainties in the dynamics accurately; iii)We evaluate the performance of Neural-L1 on a physics-based simulator, PyBullet, and conduct extensive real-world experiments with the F1TENTH platform to demonstrate superior reference trajectory tracking performance of Neural-L1 compared to other state-of-the-art controllers, in the presence of uncertainties. Our project page, including supplementary material and videos, can be found at https://mukhe027.github.io/Neural-Adaptive-Control/
Abstract:We present a multi-agent reinforcement learning approach to solve a pursuit-evasion game between two players with car-like dynamics and sensing limitations. We develop a curriculum for an existing multi-agent deterministic policy gradient algorithm to simultaneously obtain strategies for both players, and deploy the learned strategies on real robots moving as fast as 2 m/s in indoor environments. Through experiments we show that the learned strategies improve over existing baselines by up to 30% in terms of capture rate for the pursuer. The learned evader model has up to 5% better escape rate over the baselines even against our competitive pursuer model. We also present experiment results which show how the pursuit-evasion game and its results evolve as the player dynamics and sensor constraints are varied. Finally, we deploy learned policies on physical robots for a game between the F1TENTH and JetRacer platforms and show that the learned strategies can be executed on real-robots. Our code and supplementary material including videos from experiments are available at https: //gonultasbu.github.io/pursuit-evasion/.
Abstract:In the robot follow-ahead task, a mobile robot is tasked to maintain its relative position in front of a moving human actor while keeping the actor in sight. To accomplish this task, it is important that the robot understand the full 3D pose of the human (since the head orientation can be different than the torso) and predict future human poses so as to plan accordingly. This prediction task is especially tricky in a complex environment with junctions and multiple corridors. In this work, we address the problem of forecasting the full 3D trajectory of a human in such environments. Our main insight is to show that one can first predict the 2D trajectory and then estimate the full 3D trajectory by conditioning the estimator on the predicted 2D trajectory. With this approach, we achieve results comparable or better than the state-of-the-art methods three times faster. As part of our contribution, we present a new dataset where, in contrast to existing datasets, the human motion is in a much larger area than a single room. We also present a complete robot system that integrates our human pose forecasting network on the mobile robot to enable real-time robot follow-ahead and present results from real-world experiments in multiple buildings on campus. Our project page, including supplementary material and videos, can be found at: https://qingyuan-jiang.github.io/iros2024_poseForecasting/
Abstract:Recently introduced ControlNet has the ability to steer the text-driven image generation process with geometric input such as human 2D pose, or edge features. While ControlNet provides control over the geometric form of the instances in the generated image, it lacks the capability to dictate the visual appearance of each instance. We present FineControlNet to provide fine control over each instance's appearance while maintaining the precise pose control capability. Specifically, we develop and demonstrate FineControlNet with geometric control via human pose images and appearance control via instance-level text prompts. The spatial alignment of instance-specific text prompts and 2D poses in latent space enables the fine control capabilities of FineControlNet. We evaluate the performance of FineControlNet with rigorous comparison against state-of-the-art pose-conditioned text-to-image diffusion models. FineControlNet achieves superior performance in generating images that follow the user-provided instance-specific text prompts and poses compared with existing methods. Project webpage: https://samsunglabs.github.io/FineControlNet-project-page
Abstract:We study the problem of aligning a video that captures a local portion of an environment to the 2D LiDAR scan of the entire environment. We introduce a method (VioLA) that starts with building a semantic map of the local scene from the image sequence, then extracts points at a fixed height for registering to the LiDAR map. Due to reconstruction errors or partial coverage of the camera scan, the reconstructed semantic map may not contain sufficient information for registration. To address this problem, VioLA makes use of a pre-trained text-to-image inpainting model paired with a depth completion model for filling in the missing scene content in a geometrically consistent fashion to support pose registration. We evaluate VioLA on two real-world RGB-D benchmarks, as well as a self-captured dataset of a large office scene. Notably, our proposed scene completion module improves the pose registration performance by up to 20%.
Abstract:A robot in a human-centric environment needs to account for the human's intent and future motion in its task and motion planning to ensure safe and effective operation. This requires symbolic reasoning about probable future actions and the ability to tie these actions to specific locations in the physical environment. While one can train behavioral models capable of predicting human motion from past activities, this approach requires large amounts of data to achieve acceptable long-horizon predictions. More importantly, the resulting models are constrained to specific data formats and modalities. Moreover, connecting predictions from such models to the environment at hand to ensure the applicability of these predictions is an unsolved problem. We present a system that utilizes a Large Language Model (LLM) to infer a human's next actions from a range of modalities without fine-tuning. A novel aspect of our system that is critical to robotics applications is that it links the predicted actions to specific locations in a semantic map of the environment. Our method leverages the fact that LLMs, trained on a vast corpus of text describing typical human behaviors, encode substantial world knowledge, including probable sequences of human actions and activities. We demonstrate how these localized activity predictions can be incorporated in a human-aware task planner for an assistive robot to reduce the occurrences of undesirable human-robot interactions by 29.2% on average.
Abstract:As service robots begin to be deployed to assist humans, it is important for them to be able to perform a skill as ubiquitous as pouring. Specifically, we focus on the task of pouring an exact amount of water without any environmental instrumentation, that is, using only the robot's own sensors to perform this task in a general way robustly. In our approach we use a simple PID controller which uses the measured change in weight of the held container to supervise the pour. Unlike previous methods which use specialized force-torque sensors at the robot wrist, we use our robot joint torque sensors and investigate the added benefit of tactile sensors at the fingertips. We train three estimators from data which regress the poured weight out of the source container and show that we can accurately pour within 10 ml of the target on average while being robust enough to pour at novel locations and with different grasps on the source container.
Abstract:We consider the problem of closed-loop robotic grasping and present a novel planner which uses Visual Feedback and an uncertainty-aware Adaptive Sampling strategy (VFAS) to close the loop. At each iteration, our method VFAS-Grasp builds a set of candidate grasps by generating random perturbations of a seed grasp. The candidates are then scored using a novel metric which combines a learned grasp-quality estimator, the uncertainty in the estimate and the distance from the seed proposal to promote temporal consistency. Additionally, we present two mechanisms to improve the efficiency of our sampling strategy: We dynamically scale the sampling region size and number of samples in it based on past grasp scores. We also leverage a motion vector field estimator to shift the center of our sampling region. We demonstrate that our algorithm can run in real time (20 Hz) and is capable of improving grasp performance for static scenes by refining the initial grasp proposal. We also show that it can enable grasping of slow moving objects, such as those encountered during human to robot handover.
Abstract:A good representation of a large, complex mobile robot workspace must be space-efficient yet capable of encoding relevant geometric details. When exploring unknown environments, it needs to be updatable incrementally in an online fashion. We introduce HIO-SDF, a new method that represents the environment as a Signed Distance Field (SDF). State of the art representations of SDFs are based on either neural networks or voxel grids. Neural networks are capable of representing the SDF continuously. However, they are hard to update incrementally as neural networks tend to forget previously observed parts of the environment unless an extensive sensor history is stored for training. Voxel-based representations do not have this problem but they are not space-efficient especially in large environments with fine details. HIO-SDF combines the advantages of these representations using a hierarchical approach which employs a coarse voxel grid that captures the observed parts of the environment together with high-resolution local information to train a neural network. HIO-SDF achieves a 46% lower mean global SDF error across all test scenes than a state of the art continuous representation, and a 30% lower error than a discrete representation at the same resolution as our coarse global SDF grid.