Abstract:Compositional and relational learning is a hallmark of human intelligence, but one which presents challenges for neural models. One difficulty in the development of such models is the lack of benchmarks with clear compositional and relational task structure on which to systematically evaluate them. In this paper, we introduce an environment called ConceptWorld, which enables the generation of images from compositional and relational concepts, defined using a logical domain specific language. We use it to generate images for a variety of compositional structures: 2x2 squares, pentominoes, sequences, scenes involving these objects, and other more complex concepts. We perform experiments to test the ability of standard neural architectures to generalize on relations with compositional arguments as the compositional depth of those arguments increases and under substitution. We compare standard neural networks such as MLP, CNN and ResNet, as well as state-of-the-art relational networks including WReN and PrediNet in a multi-class image classification setting. For simple problems, all models generalize well to close concepts but struggle with longer compositional chains. For more complex tests involving substitutivity, all models struggle, even with short chains. In highlighting these difficulties and providing an environment for further experimentation, we hope to encourage the development of models which are able to generalize effectively in compositional, relational domains.
Abstract:Transfer learning is becoming the de facto solution for vision and text encoders in the front-end processing of machine learning solutions. Utilizing vast amounts of knowledge in pre-trained models and subsequent fine-tuning allows achieving better performance in domains where labeled data is limited. In this paper, we analyze the efficiency of transfer learning in visual reasoning by introducing a new model (SAMNet) and testing it on two datasets: COG and CLEVR. Our new model achieves state-of-the-art accuracy on COG and shows significantly better generalization capabilities compared to the baseline. We also formalize a taxonomy of transfer learning for visual reasoning around three axes: feature, temporal, and reasoning transfer. Based on extensive experimentation of transfer learning on each of the two datasets, we show the performance of the new model along each axis.
Abstract:We introduce a variant of the MAC model (Hudson and Manning, ICLR 2018) with a simplified set of equations that achieves comparable accuracy, while training faster. We evaluate both models on CLEVR and CoGenT, and show that, transfer learning with fine-tuning results in a 15 point increase in accuracy, matching the state of the art. Finally, in contrast, we demonstrate that improper fine-tuning can actually reduce a model's accuracy as well.