Abstract:Background: The integration of multi-stain histopathology images through deep learning poses a significant challenge in digital histopathology. Current multi-modal approaches struggle with data heterogeneity and missing data. This study aims to overcome these limitations by developing a novel transformer model for multi-stain integration that can handle missing data during training as well as inference. Methods: We propose UNICORN (UNiversal modality Integration Network for CORonary classificatioN) a multi-modal transformer capable of processing multi-stain histopathology for atherosclerosis severity class prediction. The architecture comprises a two-stage, end-to-end trainable model with specialized modules utilizing transformer self-attention blocks. The initial stage employs domain-specific expert modules to extract features from each modality. In the subsequent stage, an aggregation expert module integrates these features by learning the interactions between the different data modalities. Results: Evaluation was performed using a multi-class dataset of atherosclerotic lesions from the Munich Cardiovascular Studies Biobank (MISSION), using over 4,000 paired multi-stain whole slide images (WSIs) from 170 deceased individuals on 7 prespecified segments of the coronary tree, each stained according to four histopathological protocols. UNICORN achieved a classification accuracy of 0.67, outperforming other state-of-the-art models. The model effectively identifies relevant tissue phenotypes across stainings and implicitly models disease progression. Conclusion: Our proposed multi-modal transformer model addresses key challenges in medical data analysis, including data heterogeneity and missing modalities. Explainability and the model's effectiveness in predicting atherosclerosis progression underscores its potential for broader applications in medical research.
Abstract:In hematology, computational models offer significant potential to improve diagnostic accuracy, streamline workflows, and reduce the tedious work of analyzing single cells in peripheral blood or bone marrow smears. However, clinical adoption of computational models has been hampered by the lack of generalization due to large batch effects, small dataset sizes, and poor performance in transfer learning from natural images. To address these challenges, we introduce DinoBloom, the first foundation model for single cell images in hematology, utilizing a tailored DINOv2 pipeline. Our model is built upon an extensive collection of 13 diverse, publicly available datasets of peripheral blood and bone marrow smears, the most substantial open-source cohort in hematology so far, comprising over 380,000 white blood cell images. To assess its generalization capability, we evaluate it on an external dataset with a challenging domain shift. We show that our model outperforms existing medical and non-medical vision models in (i) linear probing and k-nearest neighbor evaluations for cell-type classification on blood and bone marrow smears and (ii) weakly supervised multiple instance learning for acute myeloid leukemia subtyping by a large margin. A family of four DinoBloom models (small, base, large, and giant) can be adapted for a wide range of downstream applications, be a strong baseline for classification problems, and facilitate the assessment of batch effects in new datasets. All models are available at github.com/marrlab/DinoBloom.
Abstract:To handle the large scale of whole slide images in computational pathology, most approaches first tessellate the images into smaller patches, extract features from these patches, and finally aggregate the feature vectors with weakly-supervised learning. The performance of this workflow strongly depends on the quality of the extracted features. Recently, foundation models in computer vision showed that leveraging huge amounts of data through supervised or self-supervised learning improves feature quality and generalizability for a variety of tasks. In this study, we benchmark the most popular vision foundation models as feature extractors for histopathology data. We evaluate the models in two settings: slide-level classification and patch-level classification. We show that foundation models are a strong baseline. Our experiments demonstrate that by finetuning a foundation model on a single GPU for only two hours or three days depending on the dataset, we can match or outperform state-of-the-art feature extractors for computational pathology. These findings imply that even with little resources one can finetune a feature extractor tailored towards a specific downstream task and dataset. This is a considerable shift from the current state, where only few institutions with large amounts of resources and datasets are able to train a feature extractor. We publish all code used for training and evaluation as well as the finetuned models.
Abstract:Optical coherence tomography (OCT) imaging from different camera devices causes challenging domain shifts and can cause a severe drop in accuracy for machine learning models. In this work, we introduce a minimal noise adaptation method based on a singular value decomposition (SVDNA) to overcome the domain gap between target domains from three different device manufacturers in retinal OCT imaging. Our method utilizes the difference in noise structure to successfully bridge the domain gap between different OCT devices and transfer the style from unlabeled target domain images to source images for which manual annotations are available. We demonstrate how this method, despite its simplicity, compares or even outperforms state-of-the-art unsupervised domain adaptation methods for semantic segmentation on a public OCT dataset. SVDNA can be integrated with just a few lines of code into the augmentation pipeline of any network which is in contrast to many state-of-the-art domain adaptation methods which often need to change the underlying model architecture or train a separate style transfer model. The full code implementation for SVDNA is available at https://github.com/ValentinKoch/SVDNA.