Abstract:Background: The integration of multi-stain histopathology images through deep learning poses a significant challenge in digital histopathology. Current multi-modal approaches struggle with data heterogeneity and missing data. This study aims to overcome these limitations by developing a novel transformer model for multi-stain integration that can handle missing data during training as well as inference. Methods: We propose UNICORN (UNiversal modality Integration Network for CORonary classificatioN) a multi-modal transformer capable of processing multi-stain histopathology for atherosclerosis severity class prediction. The architecture comprises a two-stage, end-to-end trainable model with specialized modules utilizing transformer self-attention blocks. The initial stage employs domain-specific expert modules to extract features from each modality. In the subsequent stage, an aggregation expert module integrates these features by learning the interactions between the different data modalities. Results: Evaluation was performed using a multi-class dataset of atherosclerotic lesions from the Munich Cardiovascular Studies Biobank (MISSION), using over 4,000 paired multi-stain whole slide images (WSIs) from 170 deceased individuals on 7 prespecified segments of the coronary tree, each stained according to four histopathological protocols. UNICORN achieved a classification accuracy of 0.67, outperforming other state-of-the-art models. The model effectively identifies relevant tissue phenotypes across stainings and implicitly models disease progression. Conclusion: Our proposed multi-modal transformer model addresses key challenges in medical data analysis, including data heterogeneity and missing modalities. Explainability and the model's effectiveness in predicting atherosclerosis progression underscores its potential for broader applications in medical research.