Abstract:Remote education has proliferated in the twenty-first century, yielding rise to intelligent tutoring systems. In particular, research has found multi-armed bandit (MAB) intelligent tutors to have notable abilities in traversing the exploration-exploitation trade-off landscape for student problem recommendations. Prior literature, however, contains a significant lack of open-sourced MAB intelligent tutors, which impedes potential applications of these educational MAB recommendation systems. In this paper, we combine recent literature on MAB intelligent tutoring techniques into an open-sourced and simply deployable hierarchical MAB algorithm, capable of progressing students concurrently through concepts and problems, determining ideal recommended problem difficulties, and assessing latent memory decay. We evaluate our algorithm using simulated groups of 500 students, utilizing Bayesian Knowledge Tracing to estimate students' content mastery. Results suggest that our algorithm, when turned difficulty-agnostic, significantly boosts student success, and that the further addition of problem-difficulty adaptation notably improves this metric.
Abstract:Artificial intelligence (AI) stands out as a game-changer in today's technology landscape. However, the integration of AI education in classroom curricula currently lags behind, leaving teenagers inadequately prepared for an imminent AI-driven future. In this pilot study, we designed a three-day bootcamp offered in the summer of 2023 to a cohort of 60 high school students. The curriculum was delivered in person through animated video content, easy-to-follow slides, interactive playgrounds, and quizzes. These were packaged in the early version of an online learning platform we are developing. Results from the post-bootcamp survey conveyed a 91.4% overall satisfaction. Despite the short bootcamp duration, 88.5% and 71.4% of teenagers responded that they had an improved understanding of AI concepts and programming, respectively. Overall, we found that employing diverse modalities effectively engaged students, and building foundational modules proved beneficial for introducing more complex topics. Furthermore, using Google Colab notebooks for coding assignments proved challenging to most students. Students' activity on the platform and their answers to quizzes showed proficient engagement and a grasp of the material. Our results strongly highlight the need for compelling and accessible AI education methods for the next generation and the potential for informal learning to fill the gap of providing early AI education to teenagers.
Abstract:The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
Abstract:This paper gives a detailed description of the pipelines used for the 2nd edition of the MICCAI 2021 Challenge on Multiple Sclerosis Lesion Segmentation. An overview of the data preprocessing steps applied is provided along with a brief description of the pipelines used, in terms of the architecture and the hyperparameters. Our code for this work can be found at: https://github.com/ivadomed/ms-challenge-2021.