Abstract:Memory disorders are a central factor in the decline of functioning and daily activities in elderly individuals. The confirmation of the illness, initiation of medication to slow its progression, and the commencement of occupational therapy aimed at maintaining and rehabilitating cognitive abilities require a medical diagnosis. The early identification of symptoms of memory disorders, especially the decline in cognitive abilities, plays a significant role in ensuring the well-being of populations. Features related to speech production are known to connect with the speaker's cognitive ability and changes. The lack of standardized speech tests in clinical settings has led to a growing emphasis on developing automatic machine learning techniques for analyzing naturally spoken language. Non-lexical but acoustic properties of spoken language have proven useful when fast, cost-effective, and scalable solutions are needed for the rapid diagnosis of a disease. The work presents an approach related to feature selection, allowing for the automatic selection of the essential features required for diagnosis from the Geneva minimalistic acoustic parameter set and relative speech pauses, intended for automatic paralinguistic and clinical speech analysis. These features are refined into word histogram features, in which machine learning classifiers are trained to classify control subjects and dementia patients from the Dementia Bank's Pitt audio database. The results show that achieving a 75% average classification accuracy with only twenty-five features with the separate ADReSS 2020 competition test data and the Leave-One-Subject-Out cross-validation of the entire competition data is possible. The results rank at the top compared to international research, where the same dataset and only acoustic features have been used to diagnose patients.
Abstract:This study employed multimodal learning analytics (MMLA) to analyze behavioral dynamics during the ABCDE procedure in nursing education, focusing on gaze entropy, hand movement velocities, and proximity measures. Utilizing accelerometers and eye-tracking techniques, behaviorgrams were generated to depict various procedural phases. Results identified four primary phases characterized by distinct patterns of visual attention, hand movements, and proximity to the patient or instruments. The findings suggest that MMLA can offer valuable insights into procedural competence in medical education. This research underscores the potential of MMLA to provide detailed, objective evaluations of clinical procedures and their inherent complexities.
Abstract:Distance-based supervised method, the minimal learning machine, constructs a predictive model from data by learning a mapping between input and output distance matrices. In this paper, we propose methods and evaluate how this technique and its core component, the distance mapping, can be adapted to multi-label learning. The proposed approach is based on combining the distance mapping with an inverse distance weighting. Although the proposal is one of the simplest methods in the multi-label learning literature, it achieves state-of-the-art performance for small to moderate-sized multi-label learning problems. Besides its simplicity, the proposed method is fully deterministic and its hyper-parameter can be selected via ranking loss-based statistic which has a closed form, thus avoiding conventional cross-validation-based hyper-parameter tuning. In addition, due to its simple linear distance mapping-based construction, we demonstrate that the proposed method can assess predictions' uncertainty for multi-label classification, which is a valuable capability for data-centric machine learning pipelines.
Abstract:Molecular-level understanding of the interactions between the constituents of an atomic structure is essential for designing novel materials in various applications. This need goes beyond the basic knowledge of the number and types of atoms, their chemical composition, and the character of the chemical interactions. The bigger picture takes place on the quantum level which can be addressed by using the Density-functional theory (DFT). Use of DFT, however, is a computationally taxing process, and its results do not readily provide easily interpretable insight into the atomic interactions which would be useful information in material design. An alternative way to address atomic interactions is to use an interpretable machine learning approach, where a predictive DFT surrogate is constructed and analyzed. The purpose of this paper is to propose such a procedure using a modification of the recently published interpretable distance-based regression method. Our tests with a representative benchmark set of molecules and a complex hybrid nanoparticle confirm the viability and usefulness of the proposed approach.
Abstract:An additive autoencoder for dimension reduction, which is composed of a serially performed bias estimation, linear trend estimation, and nonlinear residual estimation, is proposed and analyzed. Computational experiments confirm that an autoencoder of this form, with only a shallow network to encapsulate the nonlinear behavior, is able to identify an intrinsic dimension of a dataset with a low autoencoding error. This observation leads to an investigation in which shallow and deep network structures, and how they are trained, are compared. We conclude that the deeper network structures obtain lower autoencoding errors during the identification of the intrinsic dimension. However, the detected dimension does not change compared to a shallow network.
Abstract:In this work, two new initialization methods for K-means clustering are proposed. Both proposals are based on applying a divide-and-conquer approach for the K-means|| type of an initialization strategy. The second proposal also utilizes multiple lower-dimensional subspaces produced by the random projection method for the initialization. The proposed methods are scalable and can be run in parallel, which make them suitable for initializing large-scale problems. In the experiments, comparison of the proposed methods to the K-means++ and K-means|| methods is conducted using an extensive set of reference and synthetic large-scale datasets. Concerning the latter, a novel high-dimensional clustering data generation algorithm is given. The experiments show that the proposed methods compare favorably to the state-of-the-art. We also observe that the currently most popular K-means++ initialization behaves like the random one in the very high-dimensional cases.
Abstract:The paper proposes to analyze a data set of Finnish ranks of academic publication channels with Extreme Learning Machine (ELM). The purpose is to introduce and test recently proposed ELM-based mislabel detection approach with a rich set of features characterizing a publication channel. We will compare the architecture, accuracy, and, especially, the set of detected mislabels of the ELM-based approach to the corresponding reference results on the reference paper.
Abstract:The Minimal Learning Machine (MLM) is a nonlinear supervised approach based on learning a linear mapping between distance matrices computed in the input and output data spaces, where distances are calculated concerning a subset of points called reference points. Its simple formulation has attracted several recent works on extensions and applications. In this paper, we aim to address some open questions related to the MLM. First, we detail theoretical aspects that assure the interpolation and universal approximation capabilities of the MLM, which were previously only empirically verified. Second, we identify the task of selecting reference points as having major importance for the MLM's generalization capability; furthermore, we assess several clustering-based methods in regression scenarios. Based on an extensive empirical evaluation, we conclude that the evaluated methods are both scalable and useful. Specifically, for a small number of reference points, the clustering-based methods outperformed the standard random selection of the original MLM formulation.