Abstract:Large language models (LLMs) have shown increasing promise in educational settings, yet their mathematical reasoning has been considered evolving. This study evaluates the mathematical capabilities of various LLMs using the Finnish matriculation examination, a high-stakes digital test for upper secondary education. Initial tests yielded moderate performance corresponding to mid-range grades, but later evaluations demonstrated substantial improvements as the language models evolved. Remarkably, some models achieved near-perfect or perfect scores, matching top student performance and qualifying for university admission. Our findings highlight the rapid advances in the mathematical proficiency of LLMs and illustrate their potential to also support educational assessments at scale.
Abstract:Generative artificial intelligence (GenAI) can reshape education and learning. While large language models (LLMs) like ChatGPT dominate current educational research, multimodal capabilities, such as text-to-speech and text-to-image, are less explored. This study uses topic modeling to map the research landscape of multimodal and generative AI in education. An extensive literature search using Dimensions.ai yielded 4175 articles. Employing a topic modeling approach, latent topics were extracted, resulting in 38 interpretable topics organized into 14 thematic areas. Findings indicate a predominant focus on text-to-text models in educational contexts, with other modalities underexplored, overlooking the broader potential of multimodal approaches. The results suggest a research gap, stressing the importance of more balanced attention across different AI modalities and educational levels. In summary, this research provides an overview of current trends in generative AI for education, underlining opportunities for future exploration of multimodal technologies to fully realize the transformative potential of artificial intelligence in education.
Abstract:This study employed multimodal learning analytics (MMLA) to analyze behavioral dynamics during the ABCDE procedure in nursing education, focusing on gaze entropy, hand movement velocities, and proximity measures. Utilizing accelerometers and eye-tracking techniques, behaviorgrams were generated to depict various procedural phases. Results identified four primary phases characterized by distinct patterns of visual attention, hand movements, and proximity to the patient or instruments. The findings suggest that MMLA can offer valuable insights into procedural competence in medical education. This research underscores the potential of MMLA to provide detailed, objective evaluations of clinical procedures and their inherent complexities.