Abstract:We present DiffChat, a novel method to align Large Language Models (LLMs) to "chat" with prompt-as-input Text-to-Image Synthesis (TIS) models (e.g., Stable Diffusion) for interactive image creation. Given a raw prompt/image and a user-specified instruction, DiffChat can effectively make appropriate modifications and generate the target prompt, which can be leveraged to create the target image of high quality. To achieve this, we first collect an instruction-following prompt engineering dataset named InstructPE for the supervised training of DiffChat. Next, we propose a reinforcement learning framework with the feedback of three core criteria for image creation, i.e., aesthetics, user preference, and content integrity. It involves an action-space dynamic modification technique to obtain more relevant positive samples and harder negative samples during the off-policy sampling. Content integrity is also introduced into the value estimation function for further improvement of produced images. Our method can exhibit superior performance than baseline models and strong competitors based on both automatic and human evaluations, which fully demonstrates its effectiveness.
Abstract:Deep Text-to-Image Synthesis (TIS) models such as Stable Diffusion have recently gained significant popularity for creative Text-to-image generation. Yet, for domain-specific scenarios, tuning-free Text-guided Image Editing (TIE) is of greater importance for application developers, which modify objects or object properties in images by manipulating feature components in attention layers during the generation process. However, little is known about what semantic meanings these attention layers have learned and which parts of the attention maps contribute to the success of image editing. In this paper, we conduct an in-depth probing analysis and demonstrate that cross-attention maps in Stable Diffusion often contain object attribution information that can result in editing failures. In contrast, self-attention maps play a crucial role in preserving the geometric and shape details of the source image during the transformation to the target image. Our analysis offers valuable insights into understanding cross and self-attention maps in diffusion models. Moreover, based on our findings, we simplify popular image editing methods and propose a more straightforward yet more stable and efficient tuning-free procedure that only modifies self-attention maps of the specified attention layers during the denoising process. Experimental results show that our simplified method consistently surpasses the performance of popular approaches on multiple datasets.
Abstract:Recently, diffusion-based deep generative models (e.g., Stable Diffusion) have shown impressive results in text-to-image synthesis. However, current text-to-image models often require multiple passes of prompt engineering by humans in order to produce satisfactory results for real-world applications. We propose BeautifulPrompt, a deep generative model to produce high-quality prompts from very simple raw descriptions, which enables diffusion-based models to generate more beautiful images. In our work, we first fine-tuned the BeautifulPrompt model over low-quality and high-quality collecting prompt pairs. Then, to ensure that our generated prompts can generate more beautiful images, we further propose a Reinforcement Learning with Visual AI Feedback technique to fine-tune our model to maximize the reward values of the generated prompts, where the reward values are calculated based on the PickScore and the Aesthetic Scores. Our results demonstrate that learning from visual AI feedback promises the potential to improve the quality of generated prompts and images significantly. We further showcase the integration of BeautifulPrompt to a cloud-native AI platform to provide better text-to-image generation service in the cloud.
Abstract:In cross-lingual language understanding, machine translation is often utilized to enhance the transferability of models across languages, either by translating the training data from the source language to the target, or from the target to the source to aid inference. However, in cross-lingual machine reading comprehension (MRC), it is difficult to perform a deep level of assistance to enhance cross-lingual transfer because of the variation of answer span positions in different languages. In this paper, we propose X-STA, a new approach for cross-lingual MRC. Specifically, we leverage an attentive teacher to subtly transfer the answer spans of the source language to the answer output space of the target. A Gradient-Disentangled Knowledge Sharing technique is proposed as an improved cross-attention block. In addition, we force the model to learn semantic alignments from multiple granularities and calibrate the model outputs with teacher guidance to enhance cross-lingual transferability. Experiments on three multi-lingual MRC datasets show the effectiveness of our method, outperforming state-of-the-art approaches.