Abstract:Group Recommendation (GR), which aims to recommend items to groups of users, has become a promising and practical direction for recommendation systems. This paper points out two issues of the state-of-the-art GR models. (1) The pre-defined and fixed number of user groups is inadequate for real-time industrial recommendation systems, where the group distribution can shift dynamically. (2) The training schema of existing GR methods is supervised, necessitating expensive user-group and group-item labels, leading to significant annotation costs. To this end, we present a novel unsupervised group recommendation framework named \underline{I}dentify \underline{T}hen \underline{R}ecommend (\underline{ITR}), where it first identifies the user groups in an unsupervised manner even without the pre-defined number of groups, and then two pre-text tasks are designed to conduct self-supervised group recommendation. Concretely, at the group identification stage, we first estimate the adaptive density of each user point, where areas with higher densities are more likely to be recognized as group centers. Then, a heuristic merge-and-split strategy is designed to discover the user groups and decision boundaries. Subsequently, at the self-supervised learning stage, the pull-and-repulsion pre-text task is proposed to optimize the user-group distribution. Besides, the pseudo group recommendation pre-text task is designed to assist the recommendations. Extensive experiments demonstrate the superiority and effectiveness of ITR on both user recommendation (e.g., 22.22\% NDCG@5 $\uparrow$) and group recommendation (e.g., 22.95\% NDCG@5 $\uparrow$). Furthermore, we deploy ITR on the industrial recommender and achieve promising results.
Abstract:Reconfigurable intelligent surface (RIS) facilitates the extraction of unpredictable channel features for physical layer key generation (PKG), securing communications among legitimate users with symmetric keys. Previous works have demonstrated that channel reciprocity plays a crucial role in generating symmetric keys in PKG systems, whereas, in reality, reciprocity is greatly affected by hardware interference and RIS-based jamming attacks. This motivates us to propose LoCKey, a novel approach that aims to improve channel reciprocity by mitigating interferences and attacks with a loop-back compensation scheme, thus maximizing the secrecy performance of the PKG system. Specifically, our proposed LoCKey is capable of effectively compensating for the CSI non-reciprocity by the combination of transmit-back signal value and error minimization module. Firstly, we introduce the entire flowchart of our method and provide an in-depth discussion of each step. Following that, we delve into a theoretical analysis of the performance optimizations when our LoCKey is applied for CSI reciprocity enhancement. Finally, we conduct experiments to verify the effectiveness of the proposed LoCKey in improving channel reciprocity under various interferences for RIS-assisted wireless communications. The results demonstrate a significant improvement in both the rate of key generation assisted by the RIS and the consistency of the generated keys, showing great potential for the practical deployment of our LoCKey in future wireless systems.
Abstract:We introduce HOSNeRF, a novel 360{\deg} free-viewpoint rendering method that reconstructs neural radiance fields for dynamic human-object-scene from a single monocular in-the-wild video. Our method enables pausing the video at any frame and rendering all scene details (dynamic humans, objects, and backgrounds) from arbitrary viewpoints. The first challenge in this task is the complex object motions in human-object interactions, which we tackle by introducing the new object bones into the conventional human skeleton hierarchy to effectively estimate large object deformations in our dynamic human-object model. The second challenge is that humans interact with different objects at different times, for which we introduce two new learnable object state embeddings that can be used as conditions for learning our human-object representation and scene representation, respectively. Extensive experiments show that HOSNeRF significantly outperforms SOTA approaches on two challenging datasets by a large margin of 40% ~ 50% in terms of LPIPS. The code, data, and compelling examples of 360{\deg} free-viewpoint renderings from single videos will be released in https://showlab.github.io/HOSNeRF.