Abstract:Group Recommendation (GR), which aims to recommend items to groups of users, has become a promising and practical direction for recommendation systems. This paper points out two issues of the state-of-the-art GR models. (1) The pre-defined and fixed number of user groups is inadequate for real-time industrial recommendation systems, where the group distribution can shift dynamically. (2) The training schema of existing GR methods is supervised, necessitating expensive user-group and group-item labels, leading to significant annotation costs. To this end, we present a novel unsupervised group recommendation framework named \underline{I}dentify \underline{T}hen \underline{R}ecommend (\underline{ITR}), where it first identifies the user groups in an unsupervised manner even without the pre-defined number of groups, and then two pre-text tasks are designed to conduct self-supervised group recommendation. Concretely, at the group identification stage, we first estimate the adaptive density of each user point, where areas with higher densities are more likely to be recognized as group centers. Then, a heuristic merge-and-split strategy is designed to discover the user groups and decision boundaries. Subsequently, at the self-supervised learning stage, the pull-and-repulsion pre-text task is proposed to optimize the user-group distribution. Besides, the pseudo group recommendation pre-text task is designed to assist the recommendations. Extensive experiments demonstrate the superiority and effectiveness of ITR on both user recommendation (e.g., 22.22\% NDCG@5 $\uparrow$) and group recommendation (e.g., 22.95\% NDCG@5 $\uparrow$). Furthermore, we deploy ITR on the industrial recommender and achieve promising results.
Abstract:Mining users' intents plays a crucial role in sequential recommendation. The recent approach, ICLRec, was introduced to extract underlying users' intents using contrastive learning and clustering. While it has shown effectiveness, the existing method suffers from complex and cumbersome alternating optimization, leading to two main issues. Firstly, the separation of representation learning and clustering optimization within a generalized expectation maximization (EM) framework often results in sub-optimal performance. Secondly, performing clustering on the entire dataset hampers scalability for large-scale industry data. To address these challenges, we propose a novel intent learning method called \underline{ODCRec}, which integrates representation learning into an \underline{O}nline \underline{D}ifferentiable \underline{C}lustering framework for \underline{Rec}ommendation. Specifically, we encode users' behavior sequences and initialize the cluster centers as differentiable network parameters. Additionally, we design a clustering loss that guides the networks to differentiate between different cluster centers and pull similar samples towards their respective cluster centers. This allows simultaneous optimization of recommendation and clustering using mini-batch data. Moreover, we leverage the learned cluster centers as self-supervision signals for representation learning, resulting in further enhancement of recommendation performance. Extensive experiments conducted on open benchmarks and industry data validate the superiority, effectiveness, and efficiency of our proposed ODCRec method. Code is available at: https://github.com/yueliu1999/ELCRec.