Abstract:Millimeter-wave (mmW) radar is widely applied to advanced autopilot assistance systems. However, its small antenna aperture causes a low imaging resolution. In this paper, a new distributed mmW radar system is designed to solve this problem. It forms a large sparse virtual planar array to enlarge the aperture, using multiple-input and multiple-output (MIMO) processing. However, in this system, traditional imaging methods cannot apply to the sparse array. Therefore, we also propose a 3D super-resolution imaging method specifically for this system in this paper. The proposed method consists of three steps: (1) using range FFT to get range imaging, (2) using 2D adaptive diagonal loading iterative adaptive approach (ADL-IAA) to acquire 2D super-resolution imaging, which can satisfy this sparsity under single-measurement, (3) using constant false alarm (CFAR) processing to gain final 3D super-resolution imaging. The simulation results show the proposed method can significantly improve imaging resolution under the sparse array and single-measurement.
Abstract:With the booming of Convolutional Neural Networks (CNNs), CNNs such as VGG-16 and ResNet-50 widely serve as backbone in SAR ship detection. However, CNN based backbone is hard to model long-range dependencies, and causes the lack of enough high-quality semantic information in feature maps of shallow layers, which leads to poor detection performance in complicated background and small-sized ships cases. To address these problems, we propose a SAR ship detection method based on Swin Transformer and Feature Enhancement Feature Pyramid Network (FEFPN). Swin Transformer serves as backbone to model long-range dependencies and generates hierarchical features maps. FEFPN is proposed to further improve the quality of feature maps by gradually enhancing the semantic information of feature maps at all levels, especially feature maps in shallow layers. Experiments conducted on SAR ship detection dataset (SSDD) reveal the advantage of our proposed methods.
Abstract:How to fully utilize polarization to enhance synthetic aperture radar (SAR) ship classification remains an unresolved issue. Thus, we propose a dual-polarization information guided network (DPIG-Net) to solve it.
Abstract:Most of existing synthetic aperture radar (SAR) ship in-stance segmentation models do not achieve mask interac-tion or offer limited interaction performance. Besides, their multi-scale ship instance segmentation performance is moderate especially for small ships. To solve these problems, we propose a mask attention interaction and scale enhancement network (MAI-SE-Net) for SAR ship instance segmentation. MAI uses an atrous spatial pyra-mid pooling (ASPP) to gain multi-resolution feature re-sponses, a non-local block (NLB) to model long-range spa-tial dependencies, and a concatenation shuffle attention block (CSAB) to improve interaction benefits. SE uses a content-aware reassembly of features block (CARAFEB) to generate an extra pyramid bottom-level to boost small ship performance, a feature balance operation (FBO) to improve scale feature description, and a global context block (GCB) to refine features. Experimental results on two public SSDD and HRSID datasets reveal that MAI-SE-Net outperforms the other nine competitive models, better than the suboptimal model by 4.7% detec-tion AP and 3.4% segmentation AP on SSDD and by 3.0% detection AP and 2.4% segmentation AP on HRSID.
Abstract:Moving target shadows among video synthetic aperture radar (Video-SAR) images are always interfered by low scattering backgrounds and cluttered noises, causing poor moving target shadow detection-tracking performance. To solve this problem, this letter proposes a shadow-background-noise 3D spatial de-composition method named SBN-3D-SD to boost shadow saliency for better Video-SAR moving target shadow detection-tracking performance.
Abstract:This letter proposes a novel Balance Scene Learning Mechanism (BSLM) for both offshore and inshore ship detection in SAR images.